TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images

计算机科学 人工智能 分割 编码器 卷积神经网络 图像分割 深度学习 模式识别(心理学) 空间分析 计算机视觉 特征学习 变压器 频道(广播) 工程类 数学 电压 电气工程 操作系统 计算机网络 统计
作者
Yinghua Fu,Junfeng Liu,Jun Shi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107938-107938 被引量:30
标识
DOI:10.1016/j.compbiomed.2024.107938
摘要

Deep learning architectures based on convolutional neural network (CNN) and Transformer have achieved great success in medical image segmentation. Models based on the encoder–decoder framework like U-Net have been successfully employed in many realistic scenarios. However, due to the low contrast between object and background, various shapes and scales of objects, and complex background in medical images, it is difficult to locate targets and obtain better segmentation performance by extracting effective information from images. In this paper, an encoder–decoder architecture based on spatial and channel attention modules built by Transformer is proposed for medical image segmentation. Concretely, spatial and channel attention modules based on Transformer are utilized to extract spatial and channel global complementary information at different layers in U-shape network, which is beneficial to learn the detail features in different scales. To fuse better spatial and channel information from Transformer features, a spatial and channel feature fusion block is designed for the decoder. The proposed network inherits the advantages of both CNN and Transformer with the local feature representation and long-range dependency for medical images. Qualitative and quantitative experiments demonstrate that the proposed method outperforms against eight state-of-the-art segmentation methods on five publicly medical image datasets including different modalities, such as 80.23% and 93.56% Dice value, 67.13% and 88.94% Intersection over Union (IoU) value on the Multi-organ Nucleus Segmentation (MoNuSeg) and Combined Healthy Abdominal Organ Segmentation with Computed Tomography scans (CHAOS-CT) datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu发布了新的文献求助10
刚刚
yongjiewei发布了新的文献求助10
刚刚
彭于晏应助mk采纳,获得10
1秒前
1秒前
Meyako应助YY采纳,获得10
2秒前
TTT0530完成签到,获得积分10
3秒前
香蕉觅云应助lyp7028采纳,获得10
4秒前
gr完成签到,获得积分10
4秒前
JANE完成签到,获得积分10
4秒前
6秒前
怡然的芯发布了新的文献求助10
7秒前
7秒前
852应助张志迪采纳,获得10
8秒前
US完成签到,获得积分10
11秒前
巡音幻夜完成签到,获得积分10
11秒前
ShengQ发布了新的文献求助10
11秒前
隐形曼青应助田...采纳,获得10
11秒前
科目三应助令人秃头采纳,获得10
11秒前
怡然的芯完成签到,获得积分10
11秒前
12秒前
12秒前
US发布了新的文献求助10
13秒前
林弋完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
濮阳香完成签到 ,获得积分10
17秒前
18秒前
夜白发布了新的文献求助10
18秒前
MengFantao完成签到 ,获得积分10
19秒前
20秒前
20秒前
喂_你好完成签到,获得积分10
20秒前
yao发布了新的文献求助10
20秒前
冯伟娜完成签到,获得积分10
21秒前
22秒前
田...发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4490233
求助须知:如何正确求助?哪些是违规求助? 3944145
关于积分的说明 12230869
捐赠科研通 3601125
什么是DOI,文献DOI怎么找? 1980437
邀请新用户注册赠送积分活动 1017340
科研通“疑难数据库(出版商)”最低求助积分说明 910345