TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images

计算机科学 人工智能 分割 编码器 卷积神经网络 图像分割 深度学习 模式识别(心理学) 空间分析 计算机视觉 特征学习 变压器 频道(广播) 工程类 数学 电压 电气工程 操作系统 计算机网络 统计
作者
Yinghua Fu,Junfeng Liu,Jun Shi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107938-107938 被引量:46
标识
DOI:10.1016/j.compbiomed.2024.107938
摘要

Deep learning architectures based on convolutional neural network (CNN) and Transformer have achieved great success in medical image segmentation. Models based on the encoder–decoder framework like U-Net have been successfully employed in many realistic scenarios. However, due to the low contrast between object and background, various shapes and scales of objects, and complex background in medical images, it is difficult to locate targets and obtain better segmentation performance by extracting effective information from images. In this paper, an encoder–decoder architecture based on spatial and channel attention modules built by Transformer is proposed for medical image segmentation. Concretely, spatial and channel attention modules based on Transformer are utilized to extract spatial and channel global complementary information at different layers in U-shape network, which is beneficial to learn the detail features in different scales. To fuse better spatial and channel information from Transformer features, a spatial and channel feature fusion block is designed for the decoder. The proposed network inherits the advantages of both CNN and Transformer with the local feature representation and long-range dependency for medical images. Qualitative and quantitative experiments demonstrate that the proposed method outperforms against eight state-of-the-art segmentation methods on five publicly medical image datasets including different modalities, such as 80.23% and 93.56% Dice value, 67.13% and 88.94% Intersection over Union (IoU) value on the Multi-organ Nucleus Segmentation (MoNuSeg) and Combined Healthy Abdominal Organ Segmentation with Computed Tomography scans (CHAOS-CT) datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天看文献了吗完成签到,获得积分10
刚刚
mwj完成签到,获得积分10
刚刚
GsunW完成签到,获得积分10
刚刚
顾矜应助LT采纳,获得10
1秒前
Jing完成签到,获得积分10
1秒前
2秒前
科研通AI6应助迷人如冬采纳,获得10
3秒前
3秒前
魈玖发布了新的文献求助10
4秒前
荀煜祺发布了新的文献求助10
5秒前
5秒前
三月完成签到,获得积分10
5秒前
小汤完成签到 ,获得积分10
5秒前
顾矜应助拉姆采纳,获得10
6秒前
7秒前
7秒前
浮游应助宇老师采纳,获得10
7秒前
高高乌冬面完成签到,获得积分10
8秒前
8秒前
lenaimiao发布了新的文献求助10
9秒前
哭泣的丝发布了新的文献求助10
9秒前
10秒前
聪慧的正豪应助休息日采纳,获得20
10秒前
10秒前
13秒前
946发布了新的文献求助10
13秒前
lhr发布了新的文献求助10
13秒前
慕青应助顺顺顺采纳,获得10
14秒前
tangyong完成签到,获得积分0
15秒前
田様应助把妹王采纳,获得10
15秒前
油油脂完成签到,获得积分10
16秒前
Akim应助水枝采纳,获得10
16秒前
17秒前
17秒前
黒子鳥发布了新的文献求助10
19秒前
19秒前
19秒前
ty完成签到,获得积分10
20秒前
酷波er应助xiaobei采纳,获得10
20秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069868
求助须知:如何正确求助?哪些是违规求助? 4291111
关于积分的说明 13369607
捐赠科研通 4111377
什么是DOI,文献DOI怎么找? 2251468
邀请新用户注册赠送积分活动 1256618
关于科研通互助平台的介绍 1189158