已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully automated radiomics-based machine learning models for multiclass classification of single brain tumors: Glioblastoma, lymphoma, and metastasis

人工智能 特征选择 计算机科学 支持向量机 机器学习 阿达布思 Lasso(编程语言) 模式识别(心理学) 接收机工作特性 Boosting(机器学习) 试验装置 分类器(UML) 万维网
作者
Bio Joo,Sung Soo Ahn,Chansik An,Kyunghwa Han,Duck Joo Choi,Hwiyoung Kim,Ji Eun Park,Ho Sung Kim,Seung Koo Lee
出处
期刊:Journal of Neuroradiology [Elsevier BV]
卷期号:50 (4): 388-395 被引量:4
标识
DOI:10.1016/j.neurad.2022.11.001
摘要

To investigate the diagnostic performance of fully automated radiomics-based models for multiclass classification of a single enhancing brain tumor among glioblastoma, central nervous system lymphoma, and metastasis.The training and test sets were comprised of 538 cases (300 glioblastomas, 73 lymphomas, and 165 metastases) and 169 cases (101 glioblastomas, 29 lymphomas, and 39 metastases), respectively. After fully automated segmentation, radiomic features were extracted. Three conventional machine learning classifiers, including least absolute shrinkage and selection operator (LASSO), adaptive boosting (Adaboost), and support vector machine with the linear kernel (SVC), combined with one of four feature selection methods, including forward sequential feature selection, F score, mutual information, and LASSO, were trained. Additionally, one ensemble classifier based on the three classifiers was used. The diagnostic performance of the optimized models was tested in the test set using the accuracy, F1-macro score, and the area under the receiver operating characteristic curve (AUCROC).The best performance was achieved when the LASSO was used as a feature selection method. In the test set, the best performance was achieved by the ensemble classifier, showing an accuracy of 76.3% (95% CI, 70.0-82.7), a F1-macro score of 0.704, and an AUCROC of 0.878.Our fully automated radiomics-based models for multiclass classification might be useful for differential diagnosis of a single enhancing brain tumor with a good diagnostic performance and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微笑高山完成签到 ,获得积分10
1秒前
bkagyin应助大雄先生采纳,获得10
4秒前
5秒前
半圭为璋完成签到,获得积分10
6秒前
10秒前
11秒前
Aruo完成签到,获得积分10
13秒前
夹心贝发布了新的文献求助20
14秒前
all完成签到,获得积分10
15秒前
15秒前
16秒前
和谐蛋蛋发布了新的文献求助10
16秒前
eiei完成签到,获得积分10
17秒前
英俊的铭应助lukybag采纳,获得30
17秒前
He发布了新的文献求助10
18秒前
小画家发布了新的文献求助10
20秒前
英姑应助He采纳,获得10
23秒前
23秒前
orixero应助孤独的小蘑菇采纳,获得10
25秒前
ning完成签到,获得积分10
27秒前
zzc发布了新的文献求助10
27秒前
29秒前
科研通AI2S应助WJY采纳,获得10
29秒前
英姑应助LHT采纳,获得10
32秒前
科研通AI2S应助羞涩的采柳采纳,获得10
34秒前
34秒前
爆米花应助方睿智采纳,获得10
35秒前
35秒前
37秒前
自觉凌蝶完成签到 ,获得积分10
40秒前
IRer79发布了新的文献求助10
40秒前
wab完成签到,获得积分0
41秒前
41秒前
星空完成签到 ,获得积分10
43秒前
44秒前
44秒前
44秒前
赘婿应助憨厚的窝瓜采纳,获得10
44秒前
ZoeyD完成签到 ,获得积分10
45秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916450
求助须知:如何正确求助?哪些是违规求助? 3461935
关于积分的说明 10919852
捐赠科研通 3188748
什么是DOI,文献DOI怎么找? 1762797
邀请新用户注册赠送积分活动 853187
科研通“疑难数据库(出版商)”最低求助积分说明 793716