Blockchain-Enabled Hierarchical Federated Learning in Resource-Constrained Power Systems

计算机科学 分布式计算 云计算 聚类分析 GSM演进的增强数据速率 建筑 块链 数据聚合器 数据挖掘 资源(消歧) 边缘计算 计算机网络 无线传感器网络 机器学习 人工智能 计算机安全 操作系统 艺术 视觉艺术
作者
Huifeng Yang,Liandong Chen,Kai Cheng,Lei Zhang,Peipei Shen,Jiewei Chen,Shaoyong Guo,Qichen Li
出处
期刊:Lecture notes in electrical engineering 卷期号:: 188-197
标识
DOI:10.1007/978-981-19-6901-0_21
摘要

AbstractPower system contains a lot of user data. When using distributed machine learning for joint modeling, there is a risk of data privacy leakage. These problems mainly show that data is exposed in the public environment, leading to attackers using big data analysis and other means to mine important information they are interested in. At the same time, complex edge wireless environment, such as unreliable wireless environment and limited network resources, leads to a long process of federated learning and training and low resource utilization. To solve the problems of data privacy, limited power network resources and unclear ownership of power data, we adopt a hierarchical federated learning architecture based on blockchain. In this architecture, we propose a balanced clustering approach that distributes edge nodes into different clusters. Edge nodes in the same cluster send their local update information to the cluster’s leader, which is then aggregated by each cluster’s leader and sent to the cloud server. Then the global aggregation is implemented on the cloud server. We propose an algorithm to determine the optimal tradeoff between local update and global aggregation to minimize functional loss with limited resource budgets. Finally, the corresponding data is verified and tracked on the blockchain. The performance of the algorithm is evaluated by a large number of experiments on real data sets, and studied on different models and data sets, and a large number of simulation results are obtained.KeywordsFederated learningBlockchainResource constraintsData sharing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙味美年达完成签到,获得积分10
刚刚
可爱的函函应助烂漫草莓采纳,获得10
1秒前
Clearly完成签到 ,获得积分10
1秒前
XXXXL发布了新的文献求助10
1秒前
2秒前
FashionBoy应助丽丽采纳,获得30
2秒前
李健应助xiu-er采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
NexusExplorer应助段采萱采纳,获得10
5秒前
研友_CCQ_M完成签到,获得积分10
5秒前
丁温暖完成签到 ,获得积分10
6秒前
上官若男应助decademe采纳,获得10
6秒前
茉莉发布了新的文献求助10
6秒前
pentjy完成签到,获得积分10
7秒前
XXXXL完成签到,获得积分10
7秒前
坚强书琴发布了新的文献求助10
8秒前
Cristine完成签到,获得积分10
8秒前
AAAADiao完成签到 ,获得积分10
9秒前
阳yang发布了新的文献求助10
9秒前
9秒前
高挑的紫安完成签到 ,获得积分10
9秒前
11秒前
11秒前
dudu发布了新的文献求助10
11秒前
11秒前
xiu-er完成签到,获得积分10
12秒前
蒙蒙完成签到,获得积分10
12秒前
科研通AI5应助内向的小脑采纳,获得10
13秒前
婉婉完成签到,获得积分10
13秒前
清爽的傲旋完成签到,获得积分10
14秒前
14秒前
33发布了新的文献求助30
15秒前
xiu-er发布了新的文献求助10
16秒前
王小美发布了新的文献求助30
17秒前
18秒前
易槐完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761