韧性
自愈材料
聚合物
复合材料
刚度
分子动力学
自愈
氢键
增韧
玻璃化转变
材料科学
纳米技术
化学工程
化学
高分子科学
分子
计算化学
有机化学
病理
替代医学
工程类
医学
作者
Baolei Zhu,Nils Jasinski,Alejandro Benítez,Manuel Noack,Daesung Park,Anja S. Goldmann,Christopher Barner‐Kowollik,Andreas Walther
标识
DOI:10.1002/ange.201502323
摘要
Abstract Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass‐transition temperature T g and bonded by quadruple hydrogen‐bonding motifs, and subsequently assembled with high‐aspect‐ratio synthetic nanoclays to generate nacre‐mimetic films. The high dynamics and self‐healing of the polymers render transparent films with a near‐perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films ( E ≈45 GPa, σ UTS ≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.
科研通智能强力驱动
Strongly Powered by AbleSci AI