Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

人工智能 计算机视觉 计算机科学 模式识别(心理学) 图像处理 数字图像 分割 图像分析 直方图 图像(数学) 数字图像分析 目视检查
作者
Paul Slusarewicz,Stefanie Pagano,Christopher Mills,Gabriel J. Popa,K. Martin Chow,Michael D. Mendenhall,David W. Rodgers,Martin K. Nielsen
出处
期刊:International Journal for Parasitology [Elsevier BV]
卷期号:46 (8): 485-493 被引量:41
标识
DOI:10.1016/j.ijpara.2016.02.004
摘要

Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyulu发布了新的文献求助10
刚刚
1秒前
sunzyu完成签到,获得积分10
1秒前
2秒前
2秒前
福福发布了新的文献求助10
2秒前
师忆夏完成签到,获得积分10
3秒前
mmol完成签到,获得积分10
3秒前
LJR完成签到,获得积分10
3秒前
JamesPei应助sx19910304采纳,获得10
3秒前
4秒前
CipherSage应助九品炼丹师采纳,获得30
4秒前
大卷发布了新的文献求助10
5秒前
chen发布了新的文献求助10
5秒前
5秒前
阿弹应助容若采纳,获得10
6秒前
英姑应助猪猪hero采纳,获得10
6秒前
6秒前
6秒前
小送完成签到,获得积分10
7秒前
Baonanza发布了新的文献求助10
8秒前
8秒前
领导范儿应助宸1采纳,获得30
9秒前
EMM完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
善学以致用应助qunli采纳,获得10
9秒前
Xian发布了新的文献求助10
10秒前
xixi发布了新的文献求助10
10秒前
核桃发布了新的文献求助30
11秒前
Minguk发布了新的文献求助10
12秒前
12秒前
摸鱼仙人发布了新的文献求助200
12秒前
12秒前
Miracle发布了新的文献求助10
13秒前
852应助英勇的灯泡采纳,获得10
13秒前
chen完成签到,获得积分20
13秒前
李李李发布了新的文献求助10
14秒前
轩辕德地完成签到,获得积分10
14秒前
大卷完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4289976
求助须知:如何正确求助?哪些是违规求助? 3817165
关于积分的说明 11953820
捐赠科研通 3461005
什么是DOI,文献DOI怎么找? 1898370
邀请新用户注册赠送积分活动 946842
科研通“疑难数据库(出版商)”最低求助积分说明 849906