Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach

预言 人工智能 深度学习 计算机科学 机器学习 特征(语言学) 任务(项目管理) 融合机制 特征学习 人工神经网络 数据挖掘 融合 工程类 语言学 哲学 系统工程 脂质双层融合
作者
Zhenghua Chen,Min Wu,Rui Zhao,Feri Guretno,Ruqiang Yan,Xiaoli Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2521-2531 被引量:432
标识
DOI:10.1109/tie.2020.2972443
摘要

For prognostics and health management of mechanical systems, a core task is to predict the machine remaining useful life (RUL). Currently, deep structures with automatic feature learning, such as long short-term memory (LSTM), have achieved great performances for the RUL prediction. However, the conventional LSTM network only uses the learned features at last time step for regression or classification, which is not efficient. Besides, some handcrafted features with domain knowledge may convey additional information for the prediction of RUL. It is thus highly motivated to integrate both those handcrafted features and automatically learned features for the RUL prediction. In this article, we propose an attention-based deep learning framework for machine's RUL prediction. The LSTM network is employed to learn sequential features from raw sensory data. Meanwhile, the proposed attention mechanism is able to learn the importance of features and time steps, and assign larger weights to more important ones. Moreover, a feature fusion framework is developed to combine the handcrafted features with automatically learned features to boost the performance of the RUL prediction. Extensive experiments have been conducted on two real datasets and experimental results demonstrate that our proposed approach outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxzzz完成签到 ,获得积分20
2秒前
4秒前
4秒前
不系之舟应助zzzz采纳,获得10
5秒前
曾昭适完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
星辰大海应助hxpxp采纳,获得10
7秒前
雪白的听寒完成签到 ,获得积分10
7秒前
Ava应助小韩采纳,获得10
8秒前
小不点完成签到 ,获得积分10
9秒前
核桃发布了新的文献求助10
9秒前
乐观小蕊完成签到 ,获得积分10
9秒前
fox199753206完成签到,获得积分10
10秒前
李爱国应助魔幻海豚采纳,获得10
10秒前
agou发布了新的文献求助10
10秒前
Yu发布了新的文献求助10
11秒前
Tracy完成签到,获得积分10
11秒前
呀呀呀呀发布了新的文献求助10
12秒前
13秒前
rice0601完成签到,获得积分10
13秒前
默默水之完成签到,获得积分10
15秒前
Lucas应助甜甜的酒窝文献采纳,获得10
15秒前
李正安应助徒花采纳,获得10
17秒前
呀呀呀呀完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
毕晓旋发布了新的文献求助10
19秒前
20秒前
古药完成签到,获得积分10
20秒前
薯条完成签到,获得积分10
22秒前
22秒前
yzadu发布了新的文献求助10
22秒前
23秒前
zzzj完成签到 ,获得积分10
24秒前
Arthur完成签到 ,获得积分10
24秒前
LLLL关注了科研通微信公众号
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550663
求助须知:如何正确求助?哪些是违规求助? 3980572
关于积分的说明 12324088
捐赠科研通 3649723
什么是DOI,文献DOI怎么找? 2010129
邀请新用户注册赠送积分活动 1045463
科研通“疑难数据库(出版商)”最低求助积分说明 933919