Video-based AI for beat-to-beat assessment of cardiac function

射血分数 心室 心脏病学 人工智能 心功能曲线 计算机科学 心力衰竭 医学 内科学
作者
David Ouyang,Bryan He,Amirata Ghorbani,Neal Yuan,Joseph E. Ebinger,Curtis P. Langlotz,Paul A. Heidenreich,Robert A. Harrington,David Liang,Euan A. Ashley,James Zou
出处
期刊:Nature [Nature Portfolio]
卷期号:580 (7802): 252-256 被引量:693
标识
DOI:10.1038/s41586-020-2145-8
摘要

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
veblem发布了新的文献求助10
1秒前
1秒前
1秒前
赘婿应助lcj1014采纳,获得10
1秒前
科研通AI5应助草玉梅皂苷采纳,获得10
3秒前
bkagyin应助echo采纳,获得10
3秒前
jssssssss发布了新的文献求助10
3秒前
chenjzhuc完成签到,获得积分10
4秒前
美女发布了新的文献求助10
4秒前
妺喜发布了新的文献求助10
5秒前
科研通AI5应助Cher1she采纳,获得30
5秒前
6秒前
Heyna发布了新的文献求助30
6秒前
veblem完成签到,获得积分10
7秒前
8秒前
8秒前
清爽的不评完成签到,获得积分10
8秒前
8秒前
小阳完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
江江好完成签到,获得积分10
11秒前
11秒前
子铭发布了新的文献求助10
12秒前
霰弹枪发布了新的文献求助10
13秒前
13秒前
lcj1014发布了新的文献求助10
13秒前
14秒前
14秒前
江江好发布了新的文献求助10
14秒前
范医生01完成签到,获得积分10
15秒前
许孤风发布了新的文献求助10
15秒前
16秒前
Chloe发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285092
求助须知:如何正确求助?哪些是违规求助? 3812537
关于积分的说明 11942455
捐赠科研通 3458948
什么是DOI,文献DOI怎么找? 1897089
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849400