Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach

健康状况 电池(电) 电动汽车 根本原因 汽车工程 电池组 均方误差 均方根 可靠性工程 计算 计算机科学 工程类 统计 算法 数学 功率(物理) 电气工程 物理 量子力学
作者
Xiao Hu,Yunhong Che,Xianke Lin,Zhongwei Deng
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 2622-2632 被引量:172
标识
DOI:10.1109/tmech.2020.2986364
摘要

Accurate, reliable, and robust prognosis of the state of health (SOH) and remaining useful life (RUL) plays a significant role in battery pack management for electric vehicles. However, there still exist challenges in computational cost, storage requirement, health indicators extraction, and algorithm design. This paper proposes a novel dual Gaussian process regression model for the SOH and RUL prognosis of battery packs. The multi-stage constant current charging method is used for aging tests. Health indicators are extracted from partial charging curves, in which capacity loss, resistance increase, and inconsistency variation are examined. A dual Gaussian process regression model is designed to predict SOH over the entire cycle life and RUL near the end of life. Experimental results show that the predictions of SOH and RUL are accurate, reliable, and robust. The maximum absolute errors and root mean square errors of SOH predictions are less than 1.3% and 0.5%, respectively, and the maximum absolute errors and root mean square errors of RUL predictions are 2 cycles and 1 cycle, respectively. The computation time for the entire training and testing process is less than 5 seconds. This article shows the prospect of health prognosis using multiple health indicators in automotive applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助lll采纳,获得10
刚刚
flyingchow完成签到,获得积分10
刚刚
2秒前
11发布了新的文献求助10
2秒前
fan发布了新的文献求助10
2秒前
852应助进击的小白菜采纳,获得10
2秒前
3秒前
王若安发布了新的文献求助10
3秒前
芽芽完成签到,获得积分10
5秒前
5秒前
Go完成签到,获得积分10
5秒前
6秒前
wdsxc完成签到,获得积分20
7秒前
7秒前
今后应助清脆易槐采纳,获得10
8秒前
8秒前
8秒前
打打应助陈成采纳,获得10
10秒前
英俊的铭应助张烨采纳,获得10
10秒前
10秒前
阔达的扬发布了新的文献求助10
11秒前
啦啦啦发布了新的文献求助30
11秒前
wyj发布了新的文献求助10
12秒前
13秒前
13秒前
Kvolu29发布了新的文献求助30
14秒前
lichee完成签到,获得积分10
14秒前
yyyyyggggg发布了新的文献求助10
14秒前
14秒前
猪猪hero发布了新的文献求助10
16秒前
16秒前
情怀应助机灵紫雪采纳,获得10
18秒前
18秒前
18秒前
18秒前
杨德帅发布了新的文献求助10
19秒前
科研巨额发布了新的文献求助10
19秒前
赘婿应助啦啦啦采纳,获得10
21秒前
wanci应助yyyyyggggg采纳,获得10
21秒前
呆萌的雁桃完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474151
求助须知:如何正确求助?哪些是违规求助? 4575997
关于积分的说明 14356041
捐赠科研通 4503822
什么是DOI,文献DOI怎么找? 2467785
邀请新用户注册赠送积分活动 1455585
关于科研通互助平台的介绍 1429599