金相学
吞吐量
材料科学
微观结构
碳纤维
碳钢
冶金
计算机科学
复合材料
腐蚀
电信
复合数
无线
作者
Brian DeCost,Bo Lei,Toby Francis,Elizabeth A. Holm
标识
DOI:10.1017/s1431927618015635
摘要
Abstract We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
科研通智能强力驱动
Strongly Powered by AbleSci AI