A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images

变更检测 深度学习 人工智能 计算机视觉 遥感 计算机科学 卷积神经网络 分割 特征(语言学) 模式识别(心理学) 地理 语言学 哲学
作者
Chenxiao Zhang,Peng Yue,Deodato Tapete,Liangcun Jiang,Boyi Shangguan,Li Huang,Guangchao Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:166: 183-200 被引量:801
标识
DOI:10.1016/j.isprsjprs.2020.06.003
摘要

Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jialin发布了新的文献求助10
1秒前
爹爹发布了新的文献求助10
1秒前
3秒前
3秒前
5秒前
嘿嘿应助德玛西亚采纳,获得10
5秒前
6秒前
打打应助陀飞轮采纳,获得10
7秒前
尺素寸心发布了新的文献求助10
8秒前
冉宝完成签到,获得积分10
10秒前
10秒前
刘玲发布了新的文献求助10
11秒前
爱笑灵雁发布了新的文献求助10
11秒前
张宇豪完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
brightface123发布了新的文献求助10
13秒前
尺素寸心完成签到,获得积分10
14秒前
SciGPT应助WW采纳,获得10
14秒前
所所应助无头骑士采纳,获得10
16秒前
winwin_chan发布了新的文献求助10
16秒前
丘比特应助余语羽采纳,获得10
18秒前
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
隐形曼青应助奚奚采纳,获得10
22秒前
23秒前
24秒前
hh发布了新的文献求助10
24秒前
乔佳怡发布了新的文献求助10
24秒前
文静勒应助aaaaa小柴采纳,获得50
25秒前
大个应助泰山球迷采纳,获得10
25秒前
dw发布了新的文献求助10
27秒前
lalala发布了新的文献求助10
29秒前
29秒前
浮游应助lc339采纳,获得10
29秒前
杨冀军完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687