亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images

变更检测 深度学习 人工智能 计算机视觉 遥感 计算机科学 卷积神经网络 分割 特征(语言学) 模式识别(心理学) 地理 语言学 哲学
作者
Chenxiao Zhang,Peng Yue,Deodato Tapete,Liangcun Jiang,Boyi Shangguan,Li Huang,Guangchao Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:166: 183-200 被引量:712
标识
DOI:10.1016/j.isprsjprs.2020.06.003
摘要

Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Waymaker采纳,获得10
12秒前
Waymaker完成签到 ,获得积分10
36秒前
53秒前
在努力了发布了新的文献求助30
58秒前
liwang9301完成签到,获得积分10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
abcdefg完成签到 ,获得积分10
1分钟前
怡然念之完成签到 ,获得积分10
2分钟前
11完成签到,获得积分10
2分钟前
Orange应助也曦采纳,获得10
2分钟前
3分钟前
也曦完成签到,获得积分10
3分钟前
冬菊完成签到 ,获得积分10
3分钟前
科研通AI5应助7NEFZ采纳,获得10
4分钟前
是木易呀完成签到,获得积分10
4分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
7NEFZ发布了新的文献求助10
5分钟前
迅速的蜡烛完成签到 ,获得积分10
6分钟前
7NEFZ完成签到,获得积分20
6分钟前
ppppppp_76完成签到 ,获得积分10
6分钟前
豌豆发布了新的文献求助10
6分钟前
7分钟前
山橘月发布了新的文献求助10
7分钟前
漠mo完成签到 ,获得积分10
7分钟前
可爱的函函应助万晓博采纳,获得30
7分钟前
科研通AI5应助7NEFZ采纳,获得10
8分钟前
8分钟前
7NEFZ发布了新的文献求助10
8分钟前
万能图书馆应助wang采纳,获得30
8分钟前
8分钟前
133发布了新的文献求助10
8分钟前
dormraider完成签到,获得积分10
8分钟前
wang完成签到,获得积分10
9分钟前
澄碧千顷完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
wang发布了新的文献求助30
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508