亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Vegetation Index-Based Curve Fitting Models for Accurate Classification of Salt Marsh Vegetation Using Sentinel-2 Time-Series

植被(病理学) 植被指数 盐沼 系列(地层学) 增强植被指数 遥感 时间序列 环境科学 理论(学习稳定性) 水文学(农业) 归一化差异植被指数 地质学 统计 数学 计算机科学 机器学习 岩土工程 气候变化 海洋学 医学 病理 古生物学
作者
Chao Sun,Jialin Li,Luodan Cao,Yongchao Liu,Song Jin,Bingxue Zhao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:20 (19): 5551-5551 被引量:22
标识
DOI:10.3390/s20195551
摘要

The successful launch of the Sentinel-2 constellation satellite, along with advanced cloud detection algorithms, has enabled the generation of continuous time series at high spatial and temporal resolutions, which is in turn expected to enable the classification of salt marsh vegetation over larger spatiotemporal scales. This study presents a critical comparison of vegetation index (VI) and curve fitting methods-two key factors for time series construction that potentially influence vegetation classification performance. To accomplish this objective, the stability of five different VI time series, namely Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), and Water-Adjusted Vegetation Index (WAVI), was compared empirically; the suitability between three curve fitting methods, namely Asymmetric Gaussian (AG), Double Logistic (DL), and Two-term Fourier (TF), and VI time series was measured using the coefficient of determination, and the salt marsh vegetation separability among different combinations of VI time series and curve fitting methods (i.e., VI time series-based curve fitting model) was quantified using overall the Jeffries-Matusita distance. Six common types of salt marsh vegetation from three typical coastal sites in China were used to validate these findings, which demonstrate: (1) the SAVI performed best in terms of time series stability, while the EVI exhibited relatively poor time series stability with conspicuous outliers induced by the sensitivity to omitted clouds and shadows; (2) the DL method commonly resulted in the most accurate classification of different salt marsh vegetation types, especially when combined with the EVI time series, followed by the TF method; and (3) the SAVI/NDVI-based DL/TF model demonstrated comparable efficiency for classifying salt marsh vegetation. Notably, the SAVI/NDVI-based DL model performed most strongly for high latitude regions with a continental climate, whilst the SAVI/NDVI-based TF model appears to be better suited to mid- to low latitude regions dominated by a monsoonal climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
16秒前
gooooood完成签到 ,获得积分20
19秒前
SciGPT应助wyj采纳,获得10
26秒前
40秒前
坚定的小海豚完成签到,获得积分10
43秒前
wyj发布了新的文献求助10
47秒前
我是笨蛋完成签到 ,获得积分10
52秒前
1分钟前
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
2分钟前
雪霁梅香完成签到,获得积分10
2分钟前
铁光发布了新的文献求助10
2分钟前
健壮的花瓣完成签到 ,获得积分10
2分钟前
盛事不朽完成签到 ,获得积分10
2分钟前
Nick_YFWS完成签到,获得积分10
2分钟前
jimmy_bytheway完成签到,获得积分0
2分钟前
车访枫完成签到 ,获得积分10
2分钟前
Perry完成签到,获得积分10
3分钟前
逝水完成签到 ,获得积分10
3分钟前
完美世界应助铁光采纳,获得10
3分钟前
伏城完成签到 ,获得积分10
4分钟前
哦豁完成签到 ,获得积分10
4分钟前
4分钟前
呆萌黑猫发布了新的文献求助10
4分钟前
bkagyin应助ppp采纳,获得10
4分钟前
FashionBoy应助呆萌黑猫采纳,获得10
4分钟前
4分钟前
ppp发布了新的文献求助10
4分钟前
米饭儿完成签到 ,获得积分10
5分钟前
Jason完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
义气幼菱发布了新的文献求助10
5分钟前
葉要加油完成签到 ,获得积分10
5分钟前
矢思然完成签到,获得积分10
6分钟前
ln完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4764010
求助须知:如何正确求助?哪些是违规求助? 4102732
关于积分的说明 12694122
捐赠科研通 3819621
什么是DOI,文献DOI怎么找? 2108266
邀请新用户注册赠送积分活动 1132773
关于科研通互助平台的介绍 1012526