Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores

金属间化合物 纳米材料基催化剂 材料科学 合金 双金属片 催化作用 冶金 化学工程 金属 化学 生物化学 工程类
作者
Jocelyn T. L. Gamler,Alberto Leonardi,Hannah M. Ashberry,Nicholas N. Daanen,Yaroslav Losovyj,Raymond R. Unocic,Michael Engel,Sara E. Skrabalak
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (4): 4008-4017 被引量:35
标识
DOI:10.1021/acsnano.8b08007
摘要

Pt catalysts are widely studied for the oxygen reduction reaction, but their cost and susceptibility to poisoning limit their use. A strategy to address both problems is to incorporate a second transition metal to form a bimetallic alloy; however, the durability of such catalysts can be hampered by leaching of non-noble metal components. Here, we show that random alloyed surfaces can be stabilized to achieve high durability by depositing the alloyed phase on top of intermetallic seeds using a model system with PdCu cores and PtCu shells. Specifically, random alloyed PtCu shells were deposited on PdCu seeds that were either the atomically random face-centered cubic phase (FCC A1, Fm3m) or the atomically ordered CsCl-like phase (B2, Pm3m). Precise control over crystallite size, particle shape, and composition allowed for comparison of these two core@shell PdCu@PtCu catalysts and the effects of the core phase on electrocatalytic durability. Indeed, the nanocatalyst with the intermetallic core saw only an 18% decrease in activity after stability testing (and minimal Cu leaching), whereas the nanocatalyst with the random alloy core saw a 58% decrease (and greater Cu leaching). The origin of this enhanced durability was probed by classical molecular dynamics simulations of model catalysts, with good agreement between model and experiment. Although many random alloy and intermetallic nanocatalysts have been evaluated, this study directly compares random alloy and intermetallic cores for electrocatalysis with the enhanced durability achieved with the intermetallic cores likely general to other core@shell nanocatalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助彩虹捕手采纳,获得10
刚刚
科研通AI5应助warspite采纳,获得30
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
614521完成签到,获得积分10
5秒前
阿达发布了新的文献求助10
5秒前
Bruce_Wei发布了新的文献求助10
5秒前
5秒前
无极发布了新的文献求助20
6秒前
感动归尘发布了新的文献求助10
6秒前
6秒前
心灵美的大山完成签到,获得积分10
7秒前
zsj发布了新的文献求助10
7秒前
Ortho Wang发布了新的文献求助10
7秒前
7秒前
无花果应助拼搏啤酒采纳,获得30
8秒前
WYQ发布了新的文献求助10
9秒前
可爱的函函应助麟钰采纳,获得10
9秒前
krislan发布了新的文献求助10
9秒前
9秒前
有志青年发布了新的文献求助10
10秒前
半夏发布了新的文献求助30
10秒前
12秒前
武雨寒发布了新的文献求助10
12秒前
彩虹捕手发布了新的文献求助10
13秒前
13秒前
13秒前
kaiqiang完成签到,获得积分10
16秒前
搞怪哑铃发布了新的文献求助10
16秒前
19秒前
19秒前
19秒前
21秒前
22秒前
比比发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4437571
求助须知:如何正确求助?哪些是违规求助? 3911324
关于积分的说明 12147351
捐赠科研通 3557754
什么是DOI,文献DOI怎么找? 1952848
邀请新用户注册赠送积分活动 992827
科研通“疑难数据库(出版商)”最低求助积分说明 888299