Graphene oxide-modified zinc anode for rechargeable aqueous batteries

阳极 电解质 石墨烯 钝化 氧化物 溶解 电偶阳极 储能 材料科学 阴极 化学工程 电池(电) 碱性电池 电极 化学 纳米技术 冶金 阴极保护 工程类 功率(物理) 量子力学 物理化学 物理 图层(电子)
作者
Zhubo Zhou,Yamin Zhang,Peng Chen,Yutong Wu,Haochen Yang,Haoran Ding,Yi Zhang,Zhongzhen Wang,Xiaoqiang Du,Nian Liu
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:194: 142-147 被引量:153
标识
DOI:10.1016/j.ces.2018.06.048
摘要

Li-based batteries are intrinsically unsafe because of their use of flammable organic electrolyte. Great efforts are being made to develop solid electrolytes or safer alternative battery chemistries, among which Zn-based batteries stand out for their high energy density and good compatibility with aqueous electrolyte. Theoretically, Zn-air batteries have very high volumetric energy density, which is ∼85% of that of Li-S batteries. However, Zn anodes have poor cycling performance because of their passivation (insulating discharge product ZnO) and dissolution (soluble zinc species in alkaline electrolytes) problems. In this work, we overcome these problems by modifying Zn anode with graphene oxide ([email protected]) by a facile solution casting method. The GO layers on the Zn surface can deliver electrons across insulating ZnO, slow down the Zn intermediates from dissolving into the electrolyte, and thereby enhance the utilization and rechargeability of Zn anodes. As a result, the [email protected] anode containing only 1.92 wt% GO showed improved cycling performance compared to that of the unmodified Zn mesh. The accumulated areal discharge capacity of the [email protected] anode is 128% of that of the unmodified Zn mesh. The [email protected] anode reported here can potentially be paired with oxygen cathode to form safe high-energy rechargeable batteries, and be used in large scale applications, ranging from electric vehicles, to grid-scale energy storage. The surface modification method reported here can also potentially be applied to other high-capacity electrodes that undergo passivation or dissolution issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MX001发布了新的文献求助10
刚刚
丙子哥发布了新的文献求助10
1秒前
1秒前
2秒前
太叔山柳完成签到,获得积分10
2秒前
wanci应助美满的太英采纳,获得10
3秒前
斯文败类应助dawuxiaohui采纳,获得10
3秒前
4秒前
在水一方应助喝一碗糖粥采纳,获得10
4秒前
JAYZHANG发布了新的文献求助10
5秒前
影子发布了新的文献求助10
6秒前
斯文败类应助cc采纳,获得10
6秒前
8秒前
李健的小迷弟应助yyj采纳,获得10
9秒前
9秒前
Mike001发布了新的文献求助10
10秒前
12秒前
12秒前
Unique关注了科研通微信公众号
15秒前
15秒前
刘无敌发布了新的文献求助10
16秒前
李健应助安安采纳,获得10
17秒前
18秒前
19秒前
烟花应助熊二浪采纳,获得10
22秒前
SciGPT应助魁梧的妙海采纳,获得30
22秒前
micro完成签到,获得积分10
23秒前
ggboy完成签到,获得积分10
23秒前
曹欣雨发布了新的文献求助10
25秒前
Serendipity发布了新的文献求助10
25秒前
skbkbe完成签到,获得积分10
25秒前
25秒前
26秒前
Owen应助吃出采纳,获得10
26秒前
27秒前
彭于晏应助勤奋曼雁采纳,获得10
28秒前
熊玉然完成签到,获得积分10
28秒前
micro发布了新的文献求助20
28秒前
乐正如彤完成签到,获得积分20
29秒前
在水一方应助moruifei采纳,获得10
31秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423309
求助须知:如何正确求助?哪些是违规求助? 2111994
关于积分的说明 5348346
捐赠科研通 1839581
什么是DOI,文献DOI怎么找? 915722
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489777