Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy

电介质 介电常数 材料科学 储能 陶瓷 工作(物理) 扫描透射电子显微镜 扫描电子显微镜 复合材料 光电子学 热力学 机械工程 物理 工程类 功率(物理)
作者
Miao Zhang,Haibo Yang,Ying Lin,Qinbin Yuan,Hongliang Du
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:45: 861-868 被引量:205
标识
DOI:10.1016/j.ensm.2021.12.037
摘要

K0.5Na0.5NbO3 (KNN)-based ceramics are considered as one of the most promising lead-free dielectric ceramics owing to relatively high dielectric breakdown strength (DBS) resulted from their unique submicron grains. Unfortunately, it has been difficult to increase recoverable energy-storage density (Wrec) and energy-storage efficiency (η) simultaneously at present. Herein, we propose a synergistic optimization strategy, namely, simultaneously enhancing DBS by tailoring grain size to submicron scale and inducing the temperature range between the maximum dielectric permittivity temperature (Tmax) and the Burns temperature (TB) to room temperature, for solving the bottleneck. (1-x)K0.5Na0.5NbO3-xBi(Ni0.5Zr0.5)O3 (KNN-BNZ) ceramics were chosen as an example to illustrate the validity of this strategy. An ultrahigh Wrec of 8.09 J·cm−3 was obtained at the optimum composition of x = 0.15 under the electric field of 870 kV·cm−1, which is much higher than those of other reported KNN-based ceramics. Most importantly, this high Wrec was accompanied by a high η of 88.46%, which is superior to those of other KNN-based ceramics and very important for practical applications. The excellent comprehensive energy storage performance was resulted from the polar nanoregions, which is confirmed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), piezo-force microscopy (PFM) and first-order reversal curve (FORC) distributions. The work not only finds out novel KNN-based ceramics with excellent comprehensive energy storage properties, but also provides a remarkable designing strategy for exploring a series of novel lead-free dielectric ceramics with high energy storage properties for practical applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒲公英完成签到,获得积分10
刚刚
1秒前
天天快乐应助Dr.coco采纳,获得10
1秒前
lzy完成签到,获得积分10
3秒前
根正苗红的小瑞恩完成签到,获得积分10
3秒前
棒子面糊糊完成签到,获得积分10
4秒前
安赛虫完成签到,获得积分10
5秒前
5秒前
钱念波发布了新的文献求助10
6秒前
冷冷发布了新的文献求助10
7秒前
8秒前
怡然问晴发布了新的文献求助10
8秒前
Jasper应助wjx采纳,获得30
9秒前
welbeck完成签到,获得积分10
11秒前
善学以致用应助quantumcell采纳,获得10
12秒前
稳重的访蕊完成签到,获得积分10
12秒前
13秒前
wafo完成签到,获得积分10
13秒前
evans完成签到,获得积分10
13秒前
852应助Djnsbj采纳,获得10
13秒前
lpr发布了新的文献求助30
16秒前
Singularity应助嗯嗯采纳,获得10
17秒前
song_song完成签到,获得积分10
17秒前
怡然问晴完成签到,获得积分10
17秒前
18秒前
18秒前
李健的小迷弟应助孔一凡采纳,获得10
19秒前
天天快乐应助Lee采纳,获得10
19秒前
19秒前
19秒前
Selenaxue完成签到,获得积分10
20秒前
打卡下班应助Zt215926采纳,获得10
20秒前
22秒前
慕青应助陶醉白风采纳,获得10
24秒前
quantumcell发布了新的文献求助10
24秒前
tfy发布了新的文献求助10
25秒前
追光发布了新的文献求助10
26秒前
Qq关注了科研通微信公众号
26秒前
杨文海发布了新的文献求助10
27秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
2025 知识产权专业知识和实务 书籍 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4115758
求助须知:如何正确求助?哪些是违规求助? 3654192
关于积分的说明 11571618
捐赠科研通 3357911
什么是DOI,文献DOI怎么找? 1844612
邀请新用户注册赠送积分活动 910205
科研通“疑难数据库(出版商)”最低求助积分说明 826826