Multi-Attribute Attention Network for Interpretable Diagnosis of Thyroid Nodules in Ultrasound Images

计算机科学 甲状腺结节 背景(考古学) 人工智能 恶性肿瘤 过程(计算) 机器学习 结核(地质) 医学 病理 古生物学 生物 操作系统
作者
Van Manh,JianQiao Zhou,Xiaohong Jia,Zehui Lin,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,Ruobing Huang,Dong Ni
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 2611-2620 被引量:17
标识
DOI:10.1109/tuffc.2022.3190012
摘要

Ultrasound (US) is the primary imaging technique for the diagnosis of thyroid cancer. However, accurate identification of nodule malignancy is a challenging task that can elude less-experienced clinicians. Recently, many computer-aided diagnosis (CAD) systems have been proposed to assist this process. However, most of them do not provide the reasoning of their classification process, which may jeopardize their credibility in practical use. To overcome this, we propose a novel deep learning (DL) framework called multi-attribute attention network (MAA-Net) that is designed to mimic the clinical diagnosis process. The proposed model learns to predict nodular attributes and infer their malignancy based on these clinically-relevant features. A multi-attention scheme is adopted to generate customized attention to improve each task and malignancy diagnosis. Furthermore, MAA-Net utilizes nodule delineations as nodules spatial prior guidance for the training rather than cropping the nodules with additional models or human interventions to prevent losing the context information. Validation experiments were performed on a large and challenging dataset containing 4554 patients. Results show that the proposed method outperformed other state-of-the-art methods and provides interpretable predictions that may better suit clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助杰king采纳,获得10
2秒前
3秒前
qt发布了新的文献求助10
3秒前
科研通AI5应助江洋大盗采纳,获得10
4秒前
ashore发布了新的文献求助10
5秒前
pluto应助舒适路人采纳,获得10
5秒前
xzx完成签到 ,获得积分10
6秒前
9秒前
WSGQT完成签到 ,获得积分10
9秒前
秋秋完成签到,获得积分10
11秒前
atons留下了新的社区评论
12秒前
安静牛排发布了新的文献求助10
12秒前
万能图书馆应助风想随心采纳,获得10
12秒前
14秒前
14秒前
YXIAN完成签到,获得积分10
14秒前
天秀之合完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
zzz完成签到,获得积分10
16秒前
16秒前
17秒前
打打应助lucky采纳,获得10
17秒前
深情飞丹完成签到 ,获得积分10
18秒前
pluto应助舒适路人采纳,获得10
18秒前
R18686226306发布了新的文献求助10
19秒前
20秒前
栗子哇呀完成签到 ,获得积分20
21秒前
lizhiqian2024发布了新的文献求助10
21秒前
22秒前
小张发布了新的文献求助10
22秒前
22秒前
杰king发布了新的文献求助10
23秒前
betty发布了新的文献求助10
24秒前
25秒前
25秒前
QIAN发布了新的文献求助10
27秒前
在水一方应助Wang采纳,获得10
28秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391