DBGAN: A dual-branch generative adversarial network for undersampled MRI reconstruction

压缩传感 欠采样 计算机科学 人工智能 规范化(社会学) 缺少数据 迭代重建 深度学习 模式识别(心理学) 插值(计算机图形学) 特征(语言学) 反褶积 自编码 算法 图像(数学) 机器学习 语言学 哲学 社会学 人类学
作者
Xianzhe Liu,Hongwei Du,Jinzhang Xu,Bensheng Qiu
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:89: 77-91 被引量:17
标识
DOI:10.1016/j.mri.2022.03.003
摘要

Compressed sensing magnetic resonance imaging (CS-MRI) greatly accelerates the acquisition process and yield considerable reconstructed images. Deep learning was introduced into CS-MRI to further speed up the reconstruction process and improve the image quality. Recently, generative adversarial network (GAN) using two-stage cascaded U-Net structure as generator has been proven to be effective in MRI reconstruction. However, previous cascaded structure was limited to few feature information propagation channels thus may lead to information missing. In this paper, we proposed a GAN-based model, DBGAN, for MRI reconstruction from undersampled k-space data. The model uses cross-stage skip connection (CSSC) between two end-to-end cascaded U-Net in our generator to widen the channels of feature propagation. To avoid discrepancy between training and inference, we replaced classical batch normalization (BN) with instance normalization (IN) . A stage loss is involved in the loss function to boost the training performance. In addition, a bilinear interpolation decoder branch is introduced in the generator to supplement the missing information of the deconvolution decoder. Tested under five variant patterns with four undersampling rates on different modality of MRI data, the quantitative results show that DBGAN model achieves mean improvements of 3.65 dB in peak signal-to-noise ratio (PSNR) and 0.016 in normalized mean square error (NMSE) compared with state-of-the-art GAN-based methods on T1-Weighted brain dataset from MICCAI 2013 grand challenge. The qualitative visual results show that our method can reconstruct considerable images on brain and knee MRI data from different modality. Furthermore, DBGAN is light and fast – the model parameters are fewer than half of state-of-the-art GAN-based methods and each 256 × 256 image is reconstructed in 60 milliseconds, which is suitable for real-time processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗小行星完成签到 ,获得积分10
刚刚
司徒不二完成签到,获得积分0
刚刚
1秒前
kongzhiqiqi发布了新的文献求助10
1秒前
2秒前
小盆呐完成签到,获得积分10
2秒前
MaYi完成签到,获得积分10
3秒前
长理物电强完成签到,获得积分10
3秒前
邵123456789完成签到,获得积分10
3秒前
teni完成签到,获得积分10
3秒前
3秒前
how完成签到,获得积分10
3秒前
MQL完成签到,获得积分10
3秒前
失眠静珊完成签到,获得积分10
4秒前
hello完成签到,获得积分10
4秒前
kangkang完成签到,获得积分10
4秒前
5秒前
怡然猎豹完成签到,获得积分0
6秒前
6秒前
Zhao发布了新的文献求助50
6秒前
整齐的凡梦完成签到,获得积分10
7秒前
gzslwddhjx完成签到,获得积分10
7秒前
何佳完成签到,获得积分10
7秒前
wardell发布了新的文献求助10
8秒前
劲进发布了新的文献求助10
8秒前
小圆完成签到,获得积分10
8秒前
福轩完成签到,获得积分10
8秒前
上冬完成签到,获得积分10
8秒前
空城完成签到,获得积分10
8秒前
皮汤汤完成签到 ,获得积分10
8秒前
笑一笑完成签到,获得积分10
9秒前
Hunter完成签到,获得积分10
9秒前
外向的雁玉完成签到,获得积分10
9秒前
kongzhiqiqi完成签到,获得积分10
9秒前
于归故城完成签到,获得积分10
10秒前
11秒前
CAOHOU应助eco采纳,获得10
11秒前
Maestro_S发布了新的文献求助10
12秒前
Yang完成签到,获得积分10
12秒前
酷波er应助zttszds采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
履带车辆的设计与计算 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486374
求助须知:如何正确求助?哪些是违规求助? 3941546
关于积分的说明 12222249
捐赠科研通 3597742
什么是DOI,文献DOI怎么找? 1978781
邀请新用户注册赠送积分活动 1015640
科研通“疑难数据库(出版商)”最低求助积分说明 908874