Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes

基因组编辑 清脆的 生物 计算生物学 基因组 基础(拓扑) 基因 进化生物学 遗传学 数学 数学分析
作者
Gaelen T. Hess,Josh Tycko,David Yao,Michael C. Bassik
出处
期刊:Molecular Cell [Elsevier BV]
卷期号:68 (1): 26-43 被引量:186
标识
DOI:10.1016/j.molcel.2017.09.029
摘要

The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology. The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FD完成签到,获得积分10
刚刚
陆鑫完成签到,获得积分10
刚刚
天真醉波完成签到 ,获得积分10
刚刚
水文小白完成签到,获得积分10
刚刚
bkagyin应助yanzinie采纳,获得10
刚刚
布丁圆团完成签到,获得积分10
1秒前
hdd完成签到,获得积分10
1秒前
淳之风完成签到,获得积分10
2秒前
3秒前
zj发布了新的文献求助10
3秒前
开心的抽屉完成签到,获得积分10
4秒前
Beyond095发布了新的文献求助10
4秒前
欢喜的荔枝完成签到,获得积分20
4秒前
heiye发布了新的文献求助10
5秒前
NexusExplorer应助机灵雨采纳,获得10
5秒前
5秒前
卡戎529完成签到 ,获得积分10
5秒前
危机的雍完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
zhou完成签到,获得积分10
6秒前
yjihn发布了新的文献求助10
7秒前
DDDD应助陆鑫采纳,获得30
7秒前
英俊的铭应助Jayden采纳,获得10
7秒前
蝉鸣发布了新的文献求助10
8秒前
帅气的白秋完成签到,获得积分10
8秒前
Qyyy完成签到,获得积分10
9秒前
橙子橙子橙子完成签到,获得积分10
9秒前
9秒前
忐忑的果汁完成签到 ,获得积分10
9秒前
11秒前
11秒前
九毛发布了新的文献求助10
11秒前
111874完成签到,获得积分10
12秒前
木木完成签到,获得积分10
12秒前
MJX完成签到,获得积分10
12秒前
充电宝应助夏侯初采纳,获得10
12秒前
光崽是谁完成签到,获得积分10
12秒前
zhx完成签到,获得积分10
13秒前
月亮完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4306311
求助须知:如何正确求助?哪些是违规求助? 3828666
关于积分的说明 11980955
捐赠科研通 3469383
什么是DOI,文献DOI怎么找? 1902557
邀请新用户注册赠送积分活动 950069
科研通“疑难数据库(出版商)”最低求助积分说明 852012