Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging

放化疗 磁共振成像 医学 病态的 结直肠癌 放射治疗 放射科 癌症 病理 内科学
作者
Bum‐Sup Jang,Yu Jin Lim,Changhoon Song,Seung Hyuck Jeon,Keun‐Wook Lee,Sung‐Bum Kang,Yoon Jin Lee,Kim Js
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:161: 183-190 被引量:25
标识
DOI:10.1016/j.radonc.2021.06.019
摘要

Introduction To develop an image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance (MR) imaging. Materials and methods A total of 466 patients with locally advanced rectal cancer who received preoperative chemoradiotherapy followed by surgical resection were collected from single center, among whom 113 (24.3%) were allocated to the holdout testing set. Complete response (pCR) was defined as Dworak tumor regression grade (TRG) 4, while good response (GR) was defined as TRG 3 or 4. Based on post-chemoradiotherapy T2-weighted axial MR images, two deep learning models were developed to predict pCR and GR, respectively. The prediction performance of the deep learning models was evaluated in the testing set and was compared to that of a senior radiologist and a radiation oncologist. Results The deep learning model showed an area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 0.76, 0.30, 0.96, 0.67, 0.87, and 85.0% for predicting pCR and 0.72, 0.54, 0.81, 0.60, 0.77, and 71.7% for predicting GR, respectively. The deep learning model had a superior predictive performance than the observers. Fair agreement between the ground truth and the model was shown for pCR prediction (kappa = 0.34) and GR prediction (kappa = 0.36). Conclusions The post-chemoradiotherapy T2-weighted axial MR image-based deep learning model showed acceptable performance in predicting pCR or GR in patients with rectal cancer, compared with human observers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
专注俊驰发布了新的文献求助10
2秒前
leeeeee发布了新的文献求助10
2秒前
王嘻嘻发布了新的文献求助10
3秒前
合适小刺猬完成签到,获得积分20
3秒前
充电宝应助安静代萱采纳,获得10
3秒前
3秒前
李爱国应助echo采纳,获得10
3秒前
xzy998发布了新的文献求助30
3秒前
雪糕刺客完成签到,获得积分20
4秒前
Hello应助徐阳采纳,获得10
4秒前
小透明发布了新的文献求助10
5秒前
5秒前
嘟嘟52edm完成签到 ,获得积分10
5秒前
ljl发布了新的文献求助10
6秒前
6秒前
6秒前
雪糕刺客发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
KYG发布了新的文献求助10
8秒前
星辰大海应助李冰冰采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
沈小小发布了新的文献求助10
9秒前
9秒前
9秒前
研友_nPP3En发布了新的文献求助10
9秒前
leeeeee完成签到,获得积分20
9秒前
9秒前
桐桐应助哈哈采纳,获得10
10秒前
10秒前
科研小飞侠完成签到,获得积分10
10秒前
11秒前
11秒前
xiaosui发布了新的文献求助30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666030
求助须知:如何正确求助?哪些是违规求助? 4046878
关于积分的说明 12516972
捐赠科研通 3739456
什么是DOI,文献DOI怎么找? 2065204
邀请新用户注册赠送积分活动 1094745
科研通“疑难数据库(出版商)”最低求助积分说明 975105