Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding

异常检测 计算机科学 公制(单位) 异常(物理) 自编码 系列(地层学) 多元统计 人工智能 数据挖掘 依赖关系(UML) 嵌入 时间序列 模式识别(心理学) 机器学习 人工神经网络 工程类 古生物学 运营管理 物理 生物 凝聚态物理
作者
Zhihan Li,Youjian Zhao,Jiaqi Han,Ya Su,Rui Jiao,Xidao Wen,Dan Pei
标识
DOI:10.1145/3447548.3467075
摘要

Anomaly detection is a crucial task for monitoring various status (i.e., metrics) of entities (e.g., manufacturing systems and Internet services), which are often characterized by multivariate time series (MTS). In practice, it's important to precisely detect the anomalies, as well as to interpret the detected anomalies through localizing a group of most anomalous metrics, to further assist the failure troubleshooting. In this paper, we propose InterFusion, an unsupervised method that simultaneously models the inter-metric and temporal dependency for MTS. Its core idea is to model the normal patterns inside MTS data through hierarchical Variational AutoEncoder with two stochastic latent variables, each of which learns low-dimensional inter-metric or temporal embeddings. Furthermore, we propose an MCMC-based method to obtain reasonable embeddings and reconstructions at anomalous parts for MTS anomaly interpretation. Our evaluation experiments are conducted on four real-world datasets from different industrial domains (three existing and one newly published dataset collected through our pilot deployment of InterFusion). InterFusion achieves an average anomaly detection F1-Score higher than 0.94 and anomaly interpretation performance of 0.87, significantly outperforming recent state-of-the-art MTS anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tyranny完成签到 ,获得积分10
刚刚
meng发布了新的文献求助10
1秒前
1秒前
Yu发布了新的文献求助10
2秒前
2秒前
Skye完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
6秒前
皓月繁星发布了新的文献求助10
6秒前
11完成签到,获得积分10
8秒前
leo完成签到,获得积分10
9秒前
小马甲应助踏雪飞鸿采纳,获得10
10秒前
开放鸿涛应助Dr大壮采纳,获得10
11秒前
乌日汗发布了新的文献求助10
11秒前
11秒前
11秒前
leo发布了新的文献求助10
12秒前
12秒前
mortal完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助mugglea采纳,获得10
13秒前
14秒前
小二郎应助yyy采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
orixero应助莫三颜采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
SCINEXUS应助科研通管家采纳,获得50
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
充电宝应助kk采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800001
求助须知:如何正确求助?哪些是违规求助? 3345347
关于积分的说明 10324720
捐赠科研通 3061849
什么是DOI,文献DOI怎么找? 1680569
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763502