荧光
生物传感器
催化作用
点击化学
组合化学
化学
DNA
纳米技术
材料科学
有机化学
物理
生物化学
光学
作者
Zhen Wang,Nan Jia,Xumei Zhou,Jing Han,Huaiyu Bu
标识
DOI:10.1021/acsabm.1c00073
摘要
Herein, a highly selective and sensitive "OFF–ON" fluorescent biosensor was designed for intracellular Cu2+ detection. Compared to the fluorescent Cu2+ biosensors reported so far, this work tackled the tricky issue of reliability of Cu2+, which mainly depends on the integration of the high selectivity of the Cu(I)-catalyzed click reaction with the ultrahigh sensitivity of a spherical nucleic acid-based 3D DNA walker. Typically, DNA track is carried out by coconjugating N3-S1 and Cy3-HP onto gold nanoparticles (AuNPs). On this state, fluorophore (Cy3) was close to the surface of AuNPs (as a nanoquencher), generating a quenched fluorescence and thus causing the initial "OFF" state. In the presence of Cu2+ and H2C2-swing arm, Cu+ was in situ generated quickly from the reduction of Cu2+ with the assistance of ascorbic acid, which could promptly and selectively trigger the Cu(I)-catalyzed click reaction-based 3D DNA walker between azide on N3-S1 and alkyne on the H2C2-swing arm. Sequentially, the activated H2C2-swing arm was able to hybridize with adjacent Cy3-HP and the 3D DNA walker was automatically driven by N.BstNBI to produce multiple Cy3-labeled DNA fragments away from the AuNP surface for signal amplification, performing a recovered fluorescence response (turning into the "ON" state). Accordingly, the ingenious integration of an efficient click reaction and smart 3D DNA walker endows the constructed fluorescent biosensor with superior selectivity and ultrahigh sensitivity. We further apply this platform for Cu2+ sensing in biological systems; this assay will provide a signal transduction strategy for evaluating intracellular Cu2+ at picomolar levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI