Graph Contrastive Learning with Local and Global Mutual Information Maximization

计算机科学 人工智能 图形 相互信息 机器学习
作者
Yifei Hu,Ya Zhang
出处
期刊:International Conference on Information Technology 卷期号:: 74-78
标识
DOI:10.1145/3446999.3447013
摘要

Graph is a common data structure in social networks, citation networks, bio-protein molecules and so on. Recent years, Graph Neural Networks(GNNs) have attracted more and more research attention because of its superior performance on some graph learning tasks. Training of GNNs needs large amount of labeled data, which casts shadows on the usability and expansibility of GNNs. Inspired by recent unsupervised research on computer vision and natural language processing, we propose a novel unsupervised graph representation learning model together with several graph data augmentation methods (drop edge, blur, mask features) and a local and global graph mutual information maximization strategy. By maximize two types of mutual information between original graph and augmented graph, the model is forced to learn some useful prior domain knowledge. We conduct experiments on both node classification and graph classification tasks and show the superior performance of the proposed model over state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
某不科学的萌萌完成签到,获得积分10
2秒前
3秒前
Suen完成签到,获得积分10
6秒前
Jenny发布了新的文献求助10
6秒前
75986686发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
丰知然应助科研通管家采纳,获得10
9秒前
x1aomaxx应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
欣慰元蝶应助科研通管家采纳,获得10
10秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
miketyson完成签到,获得积分10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得20
10秒前
烟花应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
丰知然应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得30
10秒前
科目三应助科研通管家采纳,获得10
10秒前
欣慰元蝶应助科研通管家采纳,获得10
10秒前
欣慰元蝶应助科研通管家采纳,获得40
11秒前
田様应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得30
11秒前
x1aomaxx应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555965
求助须知:如何正确求助?哪些是违规求助? 4640688
关于积分的说明 14662327
捐赠科研通 4582626
什么是DOI,文献DOI怎么找? 2513541
邀请新用户注册赠送积分活动 1488092
关于科研通互助平台的介绍 1458976