亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and Landmark Localization on 3D Intraoral Scans

地标 人工智能 分割 计算机科学 模式识别(心理学) 计算机视觉 相似性(几何) 多边形网格 Sørensen–骰子系数 图像分割 图像(数学) 计算机图形学(图像)
作者
Tai‐Hsien Wu,Chunfeng Lian,Sanghee Lee,Matthew Pastewait,Christian Piers,Jie Liu,Fan Wang,Li Wang,Chiung-Ying Chiu,Wenchi Wang,Christina Jackson,Wei‐Lun Chao,Dinggang Shen,Ching‐Chang Ko
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3158-3166 被引量:54
标识
DOI:10.1109/tmi.2022.3180343
摘要

Accurately segmenting teeth and identifying the corresponding anatomical landmarks on dental mesh models are essential in computer-aided orthodontic treatment. Manually performing these two tasks is time-consuming, tedious, and, more importantly, highly dependent on orthodontists' experiences due to the abnormality and large-scale variance of patients' teeth. Some machine learning-based methods have been designed and applied in the orthodontic field to automatically segment dental meshes (e.g., intraoral scans). In contrast, the number of studies on tooth landmark localization is still limited. This paper proposes a two-stage framework based on mesh deep learning (called TS-MDL) for joint tooth labeling and landmark identification on raw intraoral scans. Our TS-MDL first adopts an end-to-end \emph{i}MeshSegNet method (i.e., a variant of the existing MeshSegNet with both improved accuracy and efficiency) to label each tooth on the downsampled scan. Guided by the segmentation outputs, our TS-MDL further selects each tooth's region of interest (ROI) on the original mesh to construct a light-weight variant of the pioneering PointNet (i.e., PointNet-Reg) for regressing the corresponding landmark heatmaps. Our TS-MDL was evaluated on a real-clinical dataset, showing promising segmentation and localization performance. Specifically, \emph{i}MeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at \textcolor[rgb]{0,0,0}{$0.964\pm0.054$}, significantly outperforming the original MeshSegNet. In the second stage, PointNet-Reg achieved a mean absolute error (MAE) of $0.597\pm0.761 \, mm$ in distances between the prediction and ground truth for $66$ landmarks, which is superior compared with other networks for landmark detection. All these results suggest the potential usage of our TS-MDL in orthodontics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可千万不要躺平呀完成签到,获得积分10
17秒前
斯文败类应助张志伟采纳,获得10
36秒前
我爱陶子完成签到 ,获得积分10
39秒前
xiaozou55完成签到 ,获得积分10
40秒前
邢夏之完成签到 ,获得积分10
41秒前
42秒前
张志伟发布了新的文献求助10
45秒前
科目三应助张志伟采纳,获得10
1分钟前
1分钟前
feng发布了新的文献求助10
1分钟前
3分钟前
标致碧发布了新的文献求助20
3分钟前
4分钟前
FL发布了新的文献求助10
4分钟前
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
FL完成签到,获得积分10
4分钟前
幽默的忆霜完成签到 ,获得积分10
4分钟前
6分钟前
6分钟前
橘橘橘子皮完成签到 ,获得积分10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
完美世界应助强强采纳,获得10
6分钟前
6分钟前
强强发布了新的文献求助10
6分钟前
heisa完成签到,获得积分10
6分钟前
蝴蝶应助强强采纳,获得10
7分钟前
诸葛小哥哥完成签到 ,获得积分10
7分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
pcr163应助Artin采纳,获得50
8分钟前
hairgod完成签到,获得积分10
9分钟前
yinqinglu发布了新的文献求助10
9分钟前
zhen发布了新的文献求助10
10分钟前
季风气候完成签到 ,获得积分10
11分钟前
11分钟前
张志伟发布了新的文献求助10
11分钟前
Artin完成签到,获得积分10
11分钟前
田様应助张志伟采纳,获得10
11分钟前
Swear完成签到 ,获得积分10
11分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824996
求助须知:如何正确求助?哪些是违规求助? 3367312
关于积分的说明 10445211
捐赠科研通 3086684
什么是DOI,文献DOI怎么找? 1698167
邀请新用户注册赠送积分活动 816655
科研通“疑难数据库(出版商)”最低求助积分说明 769880