生物利用度
非生物成分
水生植物
环境化学
水生植物
纳米颗粒
化学
溶解有机碳
植物
生态学
生物
纳米技术
材料科学
生物信息学
作者
J. Brad Glenn,Stephen J. Klaine
摘要
This research identified and characterized factors that influenced nanomaterial bioavailability to three aquatic plants: Azolla caroliniana Willd, Egeria densa Planch., and Myriophyllum simulans Orch. Plants were exposed to 4-, 18-, and 30-nm gold nanoparticles. Uptake was influenced by nanoparticle size, the presence of roots on the plant, and dissolved organic carbon in the media. Statistical analysis of the data also revealed that particle uptake was influenced by a 4-way (plant species, plant roots, particle size, and dissolved organic carbon) interaction suggesting nanoparticle bioavailability was a complex result of multiple parameters. Size and species dependent absorption was observed that was dependent on the presence of roots and nanoparticle size. The presence of dissolved organic carbon was found to associate with 4- and 18-nm gold nanoparticles in suspension and form a nanoparticle/organic matter complex that resulted in (1) minimized particle aggregation and (2) a decrease of nanoparticle absorption by the aquatic plants. The same effect was not observed with the 30-nm nanoparticle treatment. These results indicate that multiple factors, both biotic and abiotic, must be taken into account when predicting bioavailability of nanomaterials to aquatic plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI