作者
Vivian Yi‐Ju Chen,Wen‐Shuenn Deng,Tse‐Chuan Yang,Stephen A. Matthews
摘要
In recent years, techniques have been developed to explore spatial nonstationarity and to model the entire distribution of a regressand. The former is mainly addressed by geographically weighted regression ( GWR ), and the latter by quantile regression ( QR ). However, little attention has been paid to combining these analytical techniques. The goal of this article is to fill this gap by introducing geographically weighted quantile regression ( GWQR ). This study briefly reviews GWR and QR , respectively, and then outlines their synergy and a new approach, GWQR . The estimations of GWQR parameters and their standard errors, the cross‐validation bandwidth selection criterion, and the nonstationarity test are discussed. We apply GWQR to U . S . county data as an example, with mortality as the dependent variable and five social determinants as explanatory covariates. Maps summarize analytic results at the 5, 25, 50, 75, and 95 percentiles. We found that the associations between mortality and determinants vary not only spatially, but also simultaneously across the distribution of mortality. These new findings provide insights into the mortality literature, and are relevant to public policy and health promotion. Our GWQR approach bridges two important statistical approaches, and facilitates spatial quantile‐based statistical analyses. En los últimos años se han desarrollado diversas técnicas para explorar tanto la heterocedasticidad (o no estacionariedad) espacial, así como para modelar toda la distribución de una variable dependiente. El primer tema ha sido abordado principalmente por la regresión ponderada geográficamente ( Geographically Weighted Regression ‐GWR ), y el segundo por la regresión por cuantiles ( Quantile Regression‐QR ). La combinación de ambas técnicas analíticas, sin embargo, ha recibido mucho menos atención. El objetivo de este artículo es llenar dicho vacío mediante la propuesta de una regresión geográficamente ponderada por cuantiles ( Geographically Weighted Quantile Regression‐ GWQR ). Los autores resumen brevemente las técnicas GWR y QR respectivamente, y luego esbozan sus propiedades sinérgicas. Luego presentan la nueva técnica propuesta: GWQR. Los autores abordan los temas de las estimaciones de los parámetros GWQR y sus errores estándar, el criterio de selección del ancho de banda de la validación cruzada ( cross‐validation bandwidth ), y la prueba heterocedasticidad espacial. Como ejemplo se aplica GWQR a datos de la tasa de mortalidad como variable dependiente y cinco determinantes sociales como variables independientes para los condados de los Estados Unidos. Los patrones espaciales se presentan en mapas con los resultados del análisis para los percentiles 5, 25, 50, 75, y 95. Los resultados muestran que las asociaciones entre la mortalidad y sus factores determinantes no sólo varían espacialmente, sino también de forma simultánea a través de la distribución de la tasa de mortalidad. Estos nuevos hallazgos coinciden con la literatura de los estudios de mortalidad, y son relevantes para aplicaciones de política pública y promoción de la salud. El enfoque GWQR representa un puente conceptual y metodológico entre dos enfoques estadísticos importantes a la vez que hace más factible el análisis estadístico espacial por cuantiles. 近年来,可用于探讨空间非平稳性和模拟回归变数分布的技术得到发展。前者主要用地理加权回归方法(GWR)处理,后者采用分位数回归(QR)处理。然而对这些分析技术的结合使用却很少关注。本文试图通过提出地理加权分位数回归(GWQR)来填补这一空白。在分别简要回顾了GWR和QR方法的基础上,基于两个方法的协同应用提出了GWQR新方法,进而讨论了GWQR的参数估计、标准误差、带宽选择标准的交叉验证和非平稳性检验。本文将死亡率作为因变量及五个社会因子作为解释变量,进行了美国县域单元的案例研究,绘制了0.05、0.25、0.5、0.75和0.95不同百分位点的分析结果图。研究发现,死亡人数不仅与解释变量的空间分布相关,同时也与其地理分布相关。这些新发现不仅可促进对死亡率相关成果的深入分析,同时也与公共政策和健康促进有关。GWQR方法架构了QR和GWR两种重要统计方法之间的纽带,也促进了基于分位数的空间统计分析方法的发展。