Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts

成纤维细胞 心脏纤维化 肌成纤维细胞 纤维化 应力纤维 细胞外基质 表型 细胞生物学 背景(考古学) 生物 PI3K/AKT/mTOR通路 癌症研究 生物信息学 病理 医学 信号转导 细胞培养 焦点粘着 遗传学 基因 古生物学
作者
Anders R. Nelson,Steven L. Christiansen,Kristen M. Naegle,Jeffrey J. Saucerman
标识
DOI:10.1101/2023.03.01.530599
摘要

Abstract Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models, apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis. Significance Cardiac fibrosis is a dysregulation of the normal wound healing response, resulting in excessive scarring and cardiac dysfunction. As cardiac fibroblasts primarily regulate this process, we explored how candidate anti-fibrotic drugs alter the fibroblast phenotype. We identify a set of 137 phenotypic features that change in response to drug treatments. Using a new computational modeling approach termed logic-based mechanistic machine learning, we predict how pirfenidone and Src inhibition affect the regulation of the phenotypic features actin filament assembly and actin-myosin stress fiber formation. We also show that inhibition of PI3K reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts, supporting a role for PI3K as a mechanism by which Src inhibition may suppress fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的秋白完成签到,获得积分10
刚刚
喜悦发布了新的文献求助10
1秒前
mia发布了新的文献求助10
3秒前
3秒前
4秒前
爆米花应助安生采纳,获得10
5秒前
hanyy完成签到,获得积分10
7秒前
wll发布了新的文献求助10
8秒前
9秒前
Tonald Yang发布了新的文献求助10
10秒前
CipherSage应助a焦采纳,获得10
11秒前
11秒前
15884134873完成签到,获得积分10
11秒前
星辰大海应助喜悦采纳,获得10
13秒前
难过盼海发布了新的文献求助10
17秒前
xxhhh完成签到 ,获得积分10
18秒前
来来完成签到 ,获得积分10
21秒前
狂野映寒发布了新的文献求助10
23秒前
wzy发布了新的文献求助10
23秒前
调皮平安完成签到,获得积分20
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
26秒前
李爱国应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
26秒前
不倦应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
welch完成签到,获得积分10
34秒前
34秒前
LJM完成签到,获得积分10
36秒前
慕青应助飞翔的翅膀采纳,获得10
36秒前
润物无声完成签到,获得积分10
41秒前
43秒前
44秒前
我是老大应助Winston采纳,获得10
46秒前
ding应助hanchangcun采纳,获得10
47秒前
49秒前
小管完成签到,获得积分10
51秒前
Huang完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3326986
关于积分的说明 10229195
捐赠科研通 3041927
什么是DOI,文献DOI怎么找? 1669688
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757