亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of convolutional neural network models that recognize normal anatomic structures during real-time radial-array and linear-array EUS (with videos)

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 医学 放射科
作者
Carlos Robles‐Medranda,Jorge Baquerizo‐Burgos,Miguel Puga‐Tejada,Raquel Del Valle,Juan C. Mendez,María Egas-Izquierdo,Martha Arevalo-Mora,Domenica Cunto,Juan Alcívar-Vasquez,Hannah Pitanga‐Lukashok,Daniela Tabacelia
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:99 (2): 271-279.e2 被引量:4
标识
DOI:10.1016/j.gie.2023.10.028
摘要

Endoscopic ultrasound (EUS) is a high-skill technique that requires numerous procedures to achieve competence. However, there are limited number of training facilities worldwide. Convolutional neural network (CNN) models have been previously implemented for object detection. We aimed to develop two EUS-based CNN models for normal anatomical structure recognition during real-time linear- and radial-array EUS evaluations.The study was performed from February 2020 to June 2022. Consecutive patient videos of linear- and radial-array EUS videos were recorded. Expert endosonographers identified and labeled twenty normal anatomical structures within the videos for training and validation of the CNN models. Initial CNN models (CNNv1) were developed from forty-five videos, and the improved models (CNNv2) from an additional 102 videos. The performance of the CNN models was compared to that of two expert endosonographers.CNNv1 used 45034 linear-array EUS frames and 21063 radial-array EUS frames. CNNv2 used 148980 linear-array EUS frames and 128871 radial-array EUS frames. CNNv1-L and CNNv1-R achieved a 75.65% and 71.36% mean average precision (mAP) with a total loss of 0.19 and 0.18, respectively. CNNv2-L obtained an 88.7% mAP with a 0.06 total loss, while CNNv2-R achieved an 83.5% mAP with a 0.07 total loss. The CNNv2 accurately detected all studied normal anatomical structures with >98% observed agreement during clinical validation.The proposed CNN models accurately recognize the normal anatomical structures in prerecorded videos and real-time EUS. Prospective trials are needed to evaluate the impact of these models on the learning curves of EUS trainees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55秒前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
kaka发布了新的文献求助30
1分钟前
左婷完成签到 ,获得积分10
1分钟前
HarryMoon完成签到,获得积分10
2分钟前
舒适的秋尽完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
紫色奶萨完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
lezbj99发布了新的文献求助10
4分钟前
moodlunatic发布了新的文献求助20
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
domingo完成签到,获得积分10
5分钟前
5分钟前
5分钟前
lezbj99发布了新的文献求助10
5分钟前
科研通AI6应助moodlunatic采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
1a完成签到 ,获得积分10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522741
求助须知:如何正确求助?哪些是违规求助? 4613661
关于积分的说明 14539176
捐赠科研通 4551386
什么是DOI,文献DOI怎么找? 2494231
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542