Development of Convolutional Neural Network Models That Recognize Normal Anatomical Structures During Real-Time Radial- and Linear-Array Endoscopic Ultrasound (with Videos)

卷积神经网络 人工智能 计算机科学 计算机视觉 模式识别(心理学) 医学
作者
Carlos Robles-Medranda,Jorge Baquerizo-Burgos,Miguel Puga-Tejada,Raquel del Valle,J. Mendez,Maria Egas-Izquierdo,Martha Arevalo-Mora,Domenica Cunto,Juan Alcívar-Vasquez,Hannah Pitanga-Lukashok,Daniela Tabacelia
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
标识
DOI:10.1016/j.gie.2023.10.028
摘要

Endoscopic ultrasound (EUS) is a high-skill technique that requires numerous procedures to achieve competence. However, there are limited number of training facilities worldwide. Convolutional neural network (CNN) models have been previously implemented for object detection. We aimed to develop two EUS-based CNN models for normal anatomical structure recognition during real-time linear- and radial-array EUS evaluations.The study was performed from February 2020 to June 2022. Consecutive patient videos of linear- and radial-array EUS videos were recorded. Expert endosonographers identified and labeled twenty normal anatomical structures within the videos for training and validation of the CNN models. Initial CNN models (CNNv1) were developed from forty-five videos, and the improved models (CNNv2) from an additional 102 videos. The performance of the CNN models was compared to that of two expert endosonographers.CNNv1 used 45034 linear-array EUS frames and 21063 radial-array EUS frames. CNNv2 used 148980 linear-array EUS frames and 128871 radial-array EUS frames. CNNv1-L and CNNv1-R achieved a 75.65% and 71.36% mean average precision (mAP) with a total loss of 0.19 and 0.18, respectively. CNNv2-L obtained an 88.7% mAP with a 0.06 total loss, while CNNv2-R achieved an 83.5% mAP with a 0.07 total loss. The CNNv2 accurately detected all studied normal anatomical structures with >98% observed agreement during clinical validation.The proposed CNN models accurately recognize the normal anatomical structures in prerecorded videos and real-time EUS. Prospective trials are needed to evaluate the impact of these models on the learning curves of EUS trainees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ricardo发布了新的文献求助10
1秒前
wyy发布了新的文献求助10
1秒前
2秒前
zzz发布了新的文献求助10
2秒前
帅气雪糕发布了新的文献求助10
3秒前
jackieshark发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
ct完成签到,获得积分10
4秒前
4秒前
大气灵枫完成签到,获得积分10
6秒前
李超杰应助周星星采纳,获得10
6秒前
6秒前
TmpVoid完成签到,获得积分10
7秒前
Jasper应助wyy采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
nanxu发布了新的文献求助20
9秒前
zzzzz发布了新的文献求助10
9秒前
Jasper应助正直的笑蓝采纳,获得10
9秒前
领导范儿应助小杨采纳,获得10
9秒前
体贴的薯片完成签到,获得积分10
9秒前
研友_Z33zkZ发布了新的文献求助10
10秒前
安全123完成签到,获得积分10
10秒前
10秒前
CipherSage应助漂亮的丝袜采纳,获得10
11秒前
11秒前
丘比特应助栗子采纳,获得10
11秒前
vivivi发布了新的文献求助30
11秒前
jackieshark完成签到,获得积分10
12秒前
喔喔发布了新的文献求助10
12秒前
13秒前
希望天下0贩的0应助方可采纳,获得10
13秒前
FLZLC发布了新的文献求助10
14秒前
马儿扎哈完成签到,获得积分10
15秒前
张虞发布了新的文献求助10
16秒前
太叔静竹完成签到,获得积分10
17秒前
太渊完成签到 ,获得积分10
18秒前
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225611
求助须知:如何正确求助?哪些是违规求助? 3758911
关于积分的说明 11815565
捐赠科研通 3420384
什么是DOI,文献DOI怎么找? 1877155
邀请新用户注册赠送积分活动 930567
科研通“疑难数据库(出版商)”最低求助积分说明 838664