亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Parametric Modeling and Deep Learning for Enhancing Pain Assessment in Postanesthesia

人工智能 卷积神经网络 深度学习 计算机科学 人口 光谱图 机器学习 非参数统计 模式识别(心理学) 鉴定(生物学) 数学 统计 医学 植物 环境卫生 生物
作者
Mihaela Ghita,Isabela Birs,Dana Copoţ,Cristina I. Muresan,Martine Neckebroek,Clara M. Ionescu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (10): 2991-3002 被引量:7
标识
DOI:10.1109/tbme.2023.3274541
摘要

The problem of reliable and widely accepted measures of pain is still open. It follows the objective of this work as pain estimation through post-surgical trauma modeling and classification, to increase the needed reliability compared to measurements only.This article proposes (i) a recursive identification method to obtain the frequency response and parameterization using fractional-order impedance models (FOIM), and (ii) deep learning with convolutional neural networks (CNN) classification algorithms using time-frequency data and spectrograms. The skin impedance measurements were conducted on 12 patients throughout the postanesthesia care in a proof-of-concept clinical trial. Recursive least-squares system identification was performed using a genetic algorithm for initializing the parametric model. The online parameter estimates were compared to the self-reported level by the Numeric Rating Scale (NRS) for analysis and validation of the results. Alternatively, the inputs to CNNs were the spectrograms extracted from the time-frequency dataset, being pre-labeled in four intensities classes of pain during offline and online training with the NRS.The tendency of nociception could be predicted by monitoring the changes in the FOIM parameters' values or by retraining online the network. Moreover, the tissue heterogeneity, assumed during nociception, could follow the NRS trends. The online predictions of retrained CNN have more specific trends to NRS than pain predicted by the offline population-trained CNN.We propose tailored online identification and deep learning for artefact corrupted environment. The results indicate estimations with the potential to avoid over-dosing due to the objectivity of the information.Models and artificial intelligence (AI) allow objective and personalized nociception-antinociception prediction in the patient safety era for the design and evaluation of closed-loop analgesia controllers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
所所应助James采纳,获得10
1分钟前
Blessing发布了新的文献求助20
2分钟前
Blessing完成签到,获得积分10
2分钟前
称心如意完成签到 ,获得积分10
3分钟前
年轻千愁完成签到 ,获得积分10
3分钟前
TEY完成签到 ,获得积分10
4分钟前
所所应助schnappi采纳,获得10
4分钟前
4分钟前
schnappi完成签到,获得积分20
4分钟前
schnappi发布了新的文献求助10
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
5分钟前
James发布了新的文献求助10
5分钟前
James完成签到,获得积分10
5分钟前
传奇3应助wise111采纳,获得10
5分钟前
5分钟前
wise111发布了新的文献求助10
5分钟前
mmyhn完成签到,获得积分10
6分钟前
在水一方应助wise111采纳,获得10
6分钟前
dashi完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
wise111发布了新的文献求助10
6分钟前
6分钟前
wise111发布了新的文献求助10
6分钟前
KaK发布了新的文献求助10
7分钟前
科研通AI5应助wise111采纳,获得10
7分钟前
7分钟前
wise111发布了新的文献求助10
7分钟前
wise111发布了新的文献求助10
7分钟前
岩下松风完成签到,获得积分10
8分钟前
烟花应助wise111采纳,获得10
9分钟前
绫艾完成签到,获得积分20
9分钟前
9分钟前
行走完成签到,获得积分10
9分钟前
wise111发布了新的文献求助10
9分钟前
烟花应助wise111采纳,获得10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281990
捐赠科研通 3053516
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468