塔菲尔方程
电催化剂
过电位
材料科学
化学工程
催化作用
双金属片
碳纤维
电解质
分解水
无机化学
化学
电极
电化学
复合材料
物理化学
有机化学
光催化
复合数
工程类
作者
Jian Su,Yanxiu Liu,Nan Jiang,Bolong Jiang,Yuanyuan Wang,Xueqin Wang,Yanguang Chen,Hua Song
标识
DOI:10.1016/j.jallcom.2023.172287
摘要
The development of hydrogen evolution catalysts with low cost, high activity, and outstanding stability has become an urgent need. Herein, we reported a novel and effective strategy for the in situ growth of NiCoP nanoparticles encapsulated in ultrathin nitrogen-doped porous carbon on nickel foam (NiCoP@NC/NF). Compared with NiCoP/NF, the NiCoP@NC/NF presented a much larger electrochemically active surface area (ECSA) (1402.9 cm2 mg−1), more abundant intrinsic HER active sites and lower charge-transfer resistance, leading to superior catalytic activity. The as-prepared NiCoP@NC/NF electrode exhibited extremely low overpotential η10 (77 mV) and Tafel slope (62.1 mV dec−1) for HER in 1.0 M KOH as the electrolyte. Importantly, due to the thin nitrogen-doped carbon layer, NiCoP@NC/NF showed considerably enhanced stability under the harsh conditions of long-term reaction. Density functional theory (DFT) calculations have indicated that the nitrogen-doped carbon of NiCoP@NC/NF permitted moderate trapping of hydrogen atoms and easy desorption of the resulting H2. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of elemental doping engineering between NC and NiCoP, the enlarged surface area/exposed catalytic active sites, and the lower transfer resistance due to the nitrogen-doping carbon. The present work proposed a controllable and feasible strategy for synthesizing bimetallic phosphides with unique morphology and high HER performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI