Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality

医学 图像质量 磁共振弥散成像 核医学 有效扩散系数 信噪比(成像) 磁共振成像 人工智能 图像分辨率 放射科 计算机科学 图像(数学) 电信
作者
Kang‐Lung Lee,Dimitri A. Kessler,Simon Dezonie,Wellington Chishaya,Christopher J. Shepherd,Bruno Carmo,Martin J. Graves,Tristan Barrett
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:166: 111017-111017 被引量:47
标识
DOI:10.1016/j.ejrad.2023.111017
摘要

To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging.Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist.All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score.DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助wangSF采纳,获得10
1秒前
聪明胡图图完成签到,获得积分10
2秒前
ksxx发布了新的文献求助10
3秒前
木头人应助Carly采纳,获得20
4秒前
垃圾桶完成签到,获得积分10
4秒前
田様应助Cm采纳,获得10
4秒前
充电宝应助左丘世立采纳,获得10
6秒前
ding应助淡淡的凌旋采纳,获得10
7秒前
h'c'z完成签到,获得积分10
7秒前
8秒前
Ava应助sfliufighting采纳,获得10
9秒前
9秒前
9秒前
9秒前
谦让小松鼠完成签到,获得积分10
12秒前
Akim应助Alicer采纳,获得20
12秒前
传奇3应助Rae采纳,获得20
12秒前
whh完成签到,获得积分10
13秒前
傲娇芷雪完成签到,获得积分10
13秒前
明芬发布了新的文献求助10
14秒前
15秒前
vivvy完成签到,获得积分10
15秒前
Kirito应助Micky采纳,获得40
15秒前
CodeCraft应助Havibi采纳,获得10
16秒前
CACT完成签到,获得积分10
16秒前
叫我少爷完成签到 ,获得积分10
18秒前
1Yer6完成签到 ,获得积分10
20秒前
xiaoxiaozhu完成签到,获得积分10
21秒前
fengpu应助Sylus采纳,获得20
22秒前
22秒前
归尘应助helicase采纳,获得30
23秒前
Daria完成签到,获得积分10
23秒前
Jasper应助rtx00采纳,获得10
24秒前
24秒前
李大明星完成签到,获得积分10
27秒前
绿藻完成签到 ,获得积分10
28秒前
李健的小迷弟应助禾盒采纳,获得10
28秒前
wangSF发布了新的文献求助10
29秒前
自然的城发布了新的文献求助10
29秒前
Alicer发布了新的文献求助20
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158059
求助须知:如何正确求助?哪些是违规求助? 3693764
关于积分的说明 11664655
捐赠科研通 3385247
什么是DOI,文献DOI怎么找? 1856880
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831347