拉曼散射
分子
基质(水族馆)
水溶液中的金属离子
离子
纳米颗粒
肺表面活性物质
等离子体子
拉曼光谱
卷积神经网络
材料科学
吸附
化学
纳米技术
分析化学(期刊)
计算机科学
色谱法
光电子学
物理化学
有机化学
物理
光学
地质学
生物化学
机器学习
海洋学
作者
Guoqiang Fang,Wuliji Hasi,Xuanyu Sha,Guangxu Cao,Siqingaowa Han,Zhenyi Zhang,Xiang Lin,Zhouzhou Bao
标识
DOI:10.1021/acs.jpclett.3c01969
摘要
Surface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution. The SERS substrate consists of surfactant-free Au nanoparticles (NPs) and l-cysteine molecules. As plasmonic nanobuilt blocks, surfactant-free Au NPs without physical or chemical barriers are more accessible to target molecules. The amino and carboxyl groups in the l-cysteine molecule can chelate As5+ ions. The CNN algorithm model is applied to quantify and predict the concentration of As5+ ions in samples. The results demonstrated that this strategy allows for fast and accurate prediction of As5+ ion concentrations, and the determination coefficient between the predicted and actual values is as high as 0.991.
科研通智能强力驱动
Strongly Powered by AbleSci AI