Robust Prediction of Alcoholism from EEG Signals Using Auto-Encoder

计算机科学 脑电图 人工智能 分类器(UML) 模式识别(心理学) 阿达布思 随机森林 神经影像学 逻辑回归 特征提取 机器学习 神经生理学 心理学 神经科学
作者
M Aarthi,Raj Sanjay Kulkarni,Chandra Kiran K,S Vinod
标识
DOI:10.1109/icccnt56998.2023.10307753
摘要

The diagnosis of alcoholism (substance abuse) is crucial due to its impact on individuals, society, and healthcare systems worldwide. Electroencephalography (EEG) signals have been shown to contain valuable information about the effects of alcoholism on the brain, and can potentially be used as a non-invasive tool for early detection and monitoring. In this study, we proposed an auto-encoder model for predicting alcoholism from EEG signals, which achieved robust and accurate performance even in the presence of noise and variability in the data. We evaluated the model using multiple classification algorithms, including Logistic Regression, Random Forest Classifier, AdaBoost Classifier, and AutoEncoders. The auto-encoder model (consisting of Bi-LSTMs and ReLU, Sigmoid activation for Dense and output layers respectively) outperformed the other algorithms, achieving an accuracy of 65.5% on the test set, while Logistic Regression achieved an accuracy of 55%, Random Forest Classifier achieved 58%, and AdaBoost Classifier achieved 58.4%. These results demonstrate the effectiveness of auto-encoder models for biomedical signal processing and provide a promising avenue for future research in this area, including the investigation of more complex architectures and feature engineering techniques, and the use of larger and more diverse datasets for training and evaluation. This research contributes to the fields of biomedical signal processing, neurophysiology, and neuroimaging, offering insights into brain activity related to alcoholism and highlighting the importance of non-invasive diagnosis and early detection in tackling alcoholism disorders and their societal impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木柟完成签到,获得积分10
1秒前
科研通AI2S应助睡不醒采纳,获得10
3秒前
大模型应助沉默钢笔采纳,获得10
3秒前
感动梦寒完成签到,获得积分10
4秒前
slz发布了新的文献求助10
5秒前
6秒前
沐浔发布了新的文献求助10
6秒前
称心静枫完成签到 ,获得积分10
12秒前
沉默钢笔完成签到,获得积分20
12秒前
星辰大海应助萨尔莫斯采纳,获得10
12秒前
Orange应助椰奶椰奶采纳,获得10
13秒前
丘奇完成签到,获得积分10
17秒前
房产中介发布了新的文献求助10
18秒前
19秒前
苹果小虾米完成签到,获得积分10
19秒前
CipherSage应助yuanji,zheng采纳,获得10
21秒前
wks666666发布了新的文献求助10
24秒前
年轻思山发布了新的文献求助10
25秒前
26秒前
秋雨发布了新的文献求助10
26秒前
深情冷松完成签到,获得积分20
27秒前
27秒前
28秒前
萨尔莫斯发布了新的文献求助10
30秒前
stone完成签到 ,获得积分10
30秒前
31秒前
冰棒比冰冰完成签到 ,获得积分10
31秒前
31秒前
xiekunwhy发布了新的文献求助10
32秒前
科研通AI2S应助囧囧囧采纳,获得10
33秒前
wks666666完成签到,获得积分10
34秒前
34秒前
34秒前
35秒前
无限的雨梅完成签到 ,获得积分10
35秒前
zhouleiwang发布了新的文献求助10
36秒前
小柒发布了新的文献求助30
38秒前
喃喃发布了新的文献求助10
39秒前
武雨寒发布了新的文献求助10
41秒前
田様应助绵绵采纳,获得10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Topological Quantum Computing 300
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346205
关于积分的说明 10328539
捐赠科研通 3062682
什么是DOI,文献DOI怎么找? 1681143
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646