亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics-based interpretable model to predict the pathological grade of pancreatic neuroendocrine tumors

医学 神经组阅片室 无线电技术 逻辑回归 神经内分泌肿瘤 接收机工作特性 可解释性 放射科 随机森林 介入放射学 回顾性队列研究 百分位 人工智能 内科学 数学 统计 计算机科学 神经学 精神科
作者
Jing‐Yuan Ye,Fang Peng,Zhenpeng Peng,Xi‐Tai Huang,Jinzhao Xie,Xiaoyu Yin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (3): 1994-2005 被引量:39
标识
DOI:10.1007/s00330-023-10186-1
摘要

Abstract Objectives To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to predict the pathological grade of pancreatic neuroendocrine tumors (pNETs) in a non-invasive manner. Methods Patients with pNETs who underwent contrast-enhanced abdominal CT between 2010 and 2022 were included in this retrospective study. Radiomics features were extracted, and five radiomics-based ML models, namely logistic regression (LR), random forest (RF), support vector machine (SVM), XGBoost, and GaussianNB, were developed. The performance of these models was evaluated using a time-independent testing set, and metrics such as sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC) were calculated. The accuracy of the radiomics model was compared to that of needle biopsy. The Shapley Additive Explanation (SHAP) tool and the correlation between radiomics and biological features were employed to explore the interpretability of the model. Results A total of 122 patients (mean age: 50 ± 14 years; 53 male) were included in the training set, whereas 100 patients (mean age: 48 ± 13 years; 50 male) were included in the testing set. The AUCs for LR, SVM, RF, XGBoost, and GaussianNB were 0.758, 0.742, 0.779, 0.744, and 0.745, respectively, with corresponding accuracies of 73.0%, 70.0%, 77.0%, 71.9%, and 72.9%. The SHAP tool identified two features of the venous phase as the most significant, which showed significant differences among the Ki-67 index or mitotic count subgroups ( p < 0.001). Conclusions An interpretable radiomics-based RF model can effectively differentiate between G1 and G2/3 of pNETs, demonstrating favorable interpretability. Clinical relevance statement The radiomics-based interpretable model developed in this study has significant clinical relevance as it offers a non-invasive method for assessing the pathological grade of pancreatic neuroendocrine tumors and holds promise as an important complementary tool to traditional tissue biopsy. Key Points • A radiomics-based interpretable model was developed to predict the pathological grade of pNETs and compared with preoperative needle biopsy in terms of accuracy. • The model, based on CT radiomics, demonstrated favorable interpretability. • The radiomics model holds potential as a valuable complementary technique to preoperative needle biopsy; however, it should not be considered a replacement for biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyokyoro完成签到,获得积分10
8秒前
8秒前
Kashing完成签到,获得积分10
13秒前
ZYP应助科研通管家采纳,获得10
16秒前
Shuo应助wuran采纳,获得10
28秒前
蜉蝣应助wuran采纳,获得10
28秒前
蜉蝣应助wuran采纳,获得10
28秒前
香蕉觅云应助wuran采纳,获得10
28秒前
蜉蝣应助wuran采纳,获得10
28秒前
机灵的衬衫完成签到 ,获得积分10
31秒前
33秒前
sunwei发布了新的文献求助10
38秒前
59秒前
orixero应助积极的绫采纳,获得10
1分钟前
1分钟前
积极的绫发布了新的文献求助10
1分钟前
积极的绫完成签到,获得积分10
1分钟前
WuFen完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI6应助冷静的魔镜采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
Kamalika完成签到,获得积分10
2分钟前
英俊的铭应助wuran采纳,获得10
2分钟前
2分钟前
1eegl发布了新的文献求助20
2分钟前
余十一完成签到 ,获得积分0
2分钟前
Lily发布了新的文献求助10
2分钟前
大个应助G1997采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
小橘子吃傻子完成签到,获得积分0
2分钟前
3分钟前
LH完成签到,获得积分10
3分钟前
3分钟前
冷静的魔镜完成签到,获得积分20
3分钟前
3分钟前
eric_pty发布了新的文献求助10
3分钟前
andrele完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4527517
求助须知:如何正确求助?哪些是违规求助? 3967038
关于积分的说明 12293536
捐赠科研通 3632130
什么是DOI,文献DOI怎么找? 1999125
邀请新用户注册赠送积分活动 1035309
科研通“疑难数据库(出版商)”最低求助积分说明 924999