Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks

计算机科学 强化学习 云计算 分布式计算 边缘设备 边缘计算 GSM演进的增强数据速率 人工智能 操作系统
作者
Xiaokang Zhou,Xuzhe Zheng,Xuesong Cui,Jiashuai Shi,Wei Liang,Zheng Yan,Laurence T. Yang,Shohei Shimizu,Kevin I‐Kai Wang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 3191-3211 被引量:97
标识
DOI:10.1109/jsac.2023.3310046
摘要

The high-speed mobile networks offer great potentials to many future intelligent applications, such as autonomous vehicles in smart transportation systems. Such networks provide the possibility to interconnect mobile devices to achieve fast knowledge sharing for efficient collaborative learning and operations, especially with the help of distributed machine learning, e.g., Federated Learning (FL), and modern digital technologies, e.g., Digital Twin (DT) systems. Typically, FL requires a fixed group of participants that have Independent and Identically Distributed (IID) data for accurate and stable model training, which is highly unlikely in real-world mobile network scenarios. In this paper, in order to facilitate the lightweight model training and real-time processing in high-speed mobile networks, we design and introduce an end-edge-cloud structured three-layer Federated Reinforcement Learning (FRL) framework, incorporated with an edge-cloud structured DT system. A dual-Reinforcement Learning (dual-RL) scheme is devised to support optimizations of client node selection and global aggregation frequency during FL via a cooperative decision-making strategy, which is assisted by a two-layer DT system deployed in the edge-cloud for real-time monitoring of mobile devices and environment changes. A model pruning and federated bidirectional distillation (Bi-distillation) mechanism is then developed locally for the lightweight model training, while a model splitting scheme with a lightweight data augmentation mechanism is developed globally to separately optimize the aggregation weights based on a splitted neural network structure (i.e., the encoder and classifier) in a more targeted manner, which can work together to effectively reduce the overall communication cost and improve the non-IID problem. Experiment and evaluation results compared with three baseline methods using two different real-world datasets demonstrate the usefulness and outstanding performance of our proposed FRL model in communication-efficient model training and non-IID issue alleviation for high-speed mobile network scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
大方不凡完成签到 ,获得积分10
2秒前
Hou完成签到 ,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
night发布了新的文献求助10
5秒前
namaka完成签到,获得积分10
6秒前
6秒前
9秒前
索尼克完成签到,获得积分10
9秒前
小蘑菇应助Franky采纳,获得10
10秒前
11秒前
Chen发布了新的文献求助10
11秒前
14秒前
15秒前
杰jay发布了新的文献求助10
15秒前
15秒前
英姑应助chun采纳,获得10
16秒前
王馨雨发布了新的文献求助10
18秒前
firefox发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助50
19秒前
21秒前
zhaojiaxu发布了新的文献求助10
22秒前
24秒前
JoJo完成签到 ,获得积分10
25秒前
sss2021完成签到,获得积分10
25秒前
jeep先生完成签到,获得积分10
27秒前
28秒前
chun发布了新的文献求助10
29秒前
踏实初露完成签到,获得积分10
30秒前
aggie完成签到,获得积分10
31秒前
32秒前
32秒前
ctq完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
34秒前
wuyyuan完成签到 ,获得积分10
35秒前
deng203完成签到 ,获得积分10
35秒前
xiaolan完成签到,获得积分10
37秒前
王馨雨完成签到,获得积分10
39秒前
斯文败类虎完成签到,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4698935
求助须知:如何正确求助?哪些是违规求助? 4067958
关于积分的说明 12576873
捐赠科研通 3767643
什么是DOI,文献DOI怎么找? 2080705
邀请新用户注册赠送积分活动 1108683
科研通“疑难数据库(出版商)”最低求助积分说明 986952