Deep learning-based lung image registration: A review

图像配准 人工智能 计算机科学 计算机视觉 领域(数学) 图像(数学) 模式识别(心理学) 数学 纯数学
作者
Hanguang Xiao,Xufeng Xue,Zhu Mi,Xin Jiang,Qingling Xia,Kai Chen,Huanqi Li,Li Long,Ke Peng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107434-107434 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107434
摘要

Lung image registration can effectively describe the relative motion of lung tissues, thereby helping to solve series problems in clinical applications. Since the lungs are soft and fairly passive organs, they are influenced by respiration and heartbeat, resulting in discontinuity of lung motion and large deformation of anatomic features. This poses great challenges for accurate registration of lung image and its applications. The recent application of deep learning (DL) methods in the field of medical image registration has brought promising results. However, a versatile registration framework has not yet emerged due to diverse challenges of registration for different regions of interest (ROI). DL-based image registration methods used for other ROI cannot achieve satisfactory results in lungs. In addition, there are few review articles available on DL-based lung image registration. In this review, the development of conventional methods for lung image registration is briefly described and a more comprehensive survey of DL-based methods for lung image registration is illustrated. The DL-based methods are classified according to different supervision types, including fully-supervised, weakly-supervised and unsupervised. The contributions of researchers in addressing various challenges are described, as well as the limitations of these approaches. This review also presents a comprehensive statistical analysis of the cited papers in terms of evaluation metrics and loss functions. In addition, publicly available datasets for lung image registration are also summarized. Finally, the remaining challenges and potential trends in DL-based lung image registration are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫吟发布了新的文献求助10
刚刚
刚刚
研研研完成签到,获得积分10
2秒前
纯情的菀发布了新的文献求助10
4秒前
爆米花应助紫吟采纳,获得10
5秒前
5秒前
sjx完成签到,获得积分10
6秒前
科研通AI5应助研研研采纳,获得10
7秒前
发嗲的羊完成签到,获得积分20
7秒前
11完成签到 ,获得积分10
7秒前
活泼的曼寒完成签到,获得积分10
8秒前
FashionBoy应助风中的含羞草采纳,获得10
10秒前
梅坤发布了新的文献求助10
10秒前
10秒前
绿野仙踪完成签到,获得积分10
11秒前
毛豆爱睡觉完成签到,获得积分10
14秒前
Akim应助斐然采纳,获得10
14秒前
纯情的菀完成签到,获得积分20
15秒前
背带裤打篮球完成签到,获得积分0
15秒前
15秒前
16秒前
科研通AI5应助河北采纳,获得10
17秒前
慕山完成签到,获得积分10
17秒前
吾月发布了新的文献求助10
18秒前
JamesPei应助Eho采纳,获得10
18秒前
20秒前
彭于晏应助DDDD采纳,获得10
20秒前
21秒前
123发布了新的文献求助10
22秒前
22秒前
博林大师完成签到,获得积分10
24秒前
酷波er应助小木瓜采纳,获得10
24秒前
动漫大师发布了新的文献求助10
24秒前
无花果应助leec采纳,获得10
25秒前
Cecilia发布了新的文献求助10
26秒前
梨子LZBL发布了新的文献求助10
26秒前
斐然发布了新的文献求助10
27秒前
27秒前
28秒前
Jasper应助vict采纳,获得10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802384
求助须知:如何正确求助?哪些是违规求助? 3348043
关于积分的说明 10336044
捐赠科研通 3063943
什么是DOI,文献DOI怎么找? 1682320
邀请新用户注册赠送积分活动 808035
科研通“疑难数据库(出版商)”最低求助积分说明 763997