已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning enabled network and task management in SDN based Fog architecture

计算机科学 服务质量 分布式计算 软件定义的网络 调度(生产过程) OpenFlow 负载平衡(电力) 计算机网络 实时计算 网格 几何学 运营管理 数学 经济
作者
Bikash Sarma,R. Kumar,Themrichon Tuithung
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:108: 108705-108705 被引量:3
标识
DOI:10.1016/j.compeleceng.2023.108705
摘要

Effective communication among Fog Computing resources is crucial concerning the network's diverse Quality of Service (QoS) parameters. However, while Fog nodes may be capable of handling local requests with sufficient computational resources, their availability can be pretty volatile, ultimately degrading overall performance. Therefore, regular link weight revision for such Fog resources is required to realize low latency in communication. Also, the prioritization of tasks and the clustering of resources significantly impact the system's overall performance. In light of this, we have proposed a novel machine learning-enabled Software Defined Networking (SDN)-based Fog Computing system with the ability to manage the network and prioritize jobs while allocating resources. In our proposed model, the SDN controller will continuously update the link weight. With the aid of Dijkstra's Algorithm, our proposed system can find the optimal path for connecting the most appropriate resources for a given task. The Gradient Descent Algorithm has been deployed in the SDN controller to get the optimal weight based on previous experiences and other parameters. Using the Gaussian Naïve Bayes Algorithm, tasks are classified according to priority to schedule them and properly minimize failure. Additionally, the proposed system clusters the resources using the K-Means++ algorithm for easy identification and quick allocation. We have simulated the proposed work using the Python programming tool, and to analyze its performance; various metrics were employed, including waiting time, turnaround time, failure rate, bandwidth utilization and forwarding count for a particular job.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dasein完成签到 ,获得积分10
1秒前
哇塞完成签到 ,获得积分10
3秒前
猪仔5号完成签到 ,获得积分10
4秒前
沐风完成签到 ,获得积分10
5秒前
简单的沛蓝完成签到 ,获得积分10
5秒前
美羊羊完成签到 ,获得积分10
7秒前
江小白完成签到,获得积分0
9秒前
KINDMAGIC完成签到,获得积分10
9秒前
林狗完成签到,获得积分10
10秒前
10秒前
shinble完成签到,获得积分10
11秒前
William完成签到,获得积分10
14秒前
hy发布了新的文献求助10
16秒前
希望天下0贩的0应助汐月采纳,获得10
17秒前
自然的清涟完成签到 ,获得积分10
18秒前
20秒前
shinble发布了新的文献求助10
23秒前
大气小天鹅完成签到 ,获得积分10
24秒前
星辰大海应助科研通管家采纳,获得20
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
MchemG应助科研通管家采纳,获得30
24秒前
思源应助科研通管家采纳,获得10
24秒前
24秒前
喜悦夏青发布了新的文献求助10
25秒前
科研通AI5应助自由的无色采纳,获得10
26秒前
斯文的凝珍完成签到,获得积分10
26秒前
27秒前
图样图森破完成签到 ,获得积分10
27秒前
gttlyb完成签到,获得积分10
28秒前
29秒前
小枣完成签到 ,获得积分10
30秒前
七慕凉完成签到,获得积分10
30秒前
Lucas应助微笑子慧采纳,获得10
31秒前
领导范儿应助CSP000采纳,获得10
32秒前
hy完成签到,获得积分10
32秒前
www完成签到,获得积分10
33秒前
爱学习发布了新的文献求助10
33秒前
勤奋的下水道工人完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340477
关于积分的说明 10300344
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491