A broad learning approach for magnetic reduction to the pole

还原(数学) 地质学 计算机科学 地球物理学 数学 几何学
作者
Qiang Zu,Xiaohui Yang,Peng Han,Kaiyan Hu,Tao Tao,Zhiyi Zeng,Xin Zhang,Qiang Luo,Zhanxiang He
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-66
标识
DOI:10.1190/geo2024-0393.1
摘要

Reduction to the pole (RTP) is a fundamental method for interpreting magnetic anomaly data. It faces challenges at low magnetic latitudes and uneven observation surfaces, potentially leading to inaccurate localization of magnetic sources. To address these issues, we develop a novel approach under the machine learning framework for achieving stable and rapid magnetic RTP in arbitrary regions. Firstly, a single magnetic dipole with random size, position and magnetization magnitude is utilized in the forward model to generate samples of the original total magnetic intensity (TMI) anomaly data and the corresponding vertical TMI, which simplifies the establishment of training data. Secondly, the broad learning system (BLS) is employed to establish a mapping relationship between the original and vertical TMI data, as the BLS exhibits fast network training process due to its concise network structure and strong mapping ability. The combination of sample generation strategy and BLS enables rapid network construction and RTP completion. The feasibility of the proposed method is validated by both synthetic models and field applications. Synthetic data tests suggest that the BLS approach can be effectively applied for magnetic RTP for various regions, including the magnetic equator and undulating surfaces. It demonstrates superior accuracy and noise robustness compared to the wavenumber domain method. Field applications show that BLS prediction results facilitate further exploration of the mining area and save more than 91% of the time compared to the equivalent source and deep learning methods. This study is useful for the rapid and accurate localization of magnetic sources and providing horizontal positional constraints for three-dimensional magnetic inversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助瑞瑞刘采纳,获得10
2秒前
2秒前
努力长胖的羊完成签到,获得积分10
3秒前
彭于晏应助yjh采纳,获得10
3秒前
FashionBoy应助大大的寄吧采纳,获得10
7秒前
Halo完成签到,获得积分20
7秒前
7秒前
Zxc发布了新的文献求助10
9秒前
10秒前
不羁之魂完成签到,获得积分10
12秒前
12秒前
隐形曼青应助寒冷怀亦采纳,获得10
13秒前
Zxc完成签到,获得积分10
14秒前
posh完成签到 ,获得积分10
16秒前
17秒前
cheng发布了新的文献求助10
17秒前
肉肉发布了新的文献求助10
18秒前
20秒前
21秒前
22秒前
24秒前
紫菱星君完成签到,获得积分10
24秒前
28秒前
河道蟹发布了新的文献求助10
28秒前
不喜发布了新的文献求助10
28秒前
12345678发布了新的文献求助10
29秒前
cheng完成签到,获得积分20
29秒前
稳重向南发布了新的文献求助10
31秒前
31秒前
31秒前
null应助123采纳,获得10
34秒前
六初完成签到 ,获得积分10
36秒前
36秒前
6666发布了新的文献求助10
36秒前
38秒前
怕黑康发布了新的文献求助10
39秒前
42秒前
42秒前
小温温完成签到 ,获得积分10
43秒前
SciGPT应助科研小白采纳,获得30
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539051
求助须知:如何正确求助?哪些是违规求助? 3973321
关于积分的说明 12308435
捐赠科研通 3640147
什么是DOI,文献DOI怎么找? 2004375
邀请新用户注册赠送积分活动 1039763
科研通“疑难数据库(出版商)”最低求助积分说明 928957