FedBranch: Heterogeneous Federated Learning via Multi-Branch Neural Network

计算机科学 计算 人工神经网络 人工智能 正规化(语言学) 趋同(经济学) 机器学习 联合学习 深层神经网络 比例(比率) 分布式计算 算法 经济增长 量子力学 物理 经济
作者
Jialuo Cui,Qiong Wu,Zhi Zhou,Xu Chen
标识
DOI:10.1109/iccc55456.2022.9880769
摘要

As a privacy-preserving paradigm of decentralized machine learning, federated learning (FL) has become a hot spot in the field of machine learning. Existing FL approaches generally assume that the global model can be deployed and trained on any client. However, in practical applications, the devices participated in FL are often heterogeneous and have different computation capacities, resulting in the difficulty of large neural network model training. The current solutions, such as reducing the scale of the global model to fit all clients or removing weak devices to deploy a larger model, will lead to model accuracy degradation, owing to the limitation of model scale or the loss of data on weak clients. To address the device heterogeneity issue inherent in FL, we propose FedBranch, a heterogeneous FL framework based on multi-branch neural network model. Its core idea is to assign a proper branch model to each client according to their computation capacity. In FedBranch, a layer-wise aggregation method is designed to address aggregation of different branches. Meanwhile, we introduce a model regularization method to improve the convergence efficiency and model performance of FedBranch. Besides, we propose a training task offloading algorithm based on Split Learning to safely and effectively share training tasks among different branch models. Extensive experiments conducted on different datasets demonstrate that our FedBranch method has higher convergence efficiency and model accuracy than existing federated learning methods in various heterogeneous scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJW关注了科研通微信公众号
2秒前
4秒前
6秒前
6秒前
小二郎应助好好好采纳,获得10
7秒前
NiceLittleQ发布了新的文献求助10
8秒前
9秒前
summer完成签到 ,获得积分10
9秒前
orixero应助冬虫夏草采纳,获得10
10秒前
10秒前
13秒前
脸小呆呆发布了新的文献求助10
15秒前
kkk完成签到 ,获得积分10
15秒前
脑洞疼应助单纯的爆米花采纳,获得10
19秒前
小7应助zwd采纳,获得50
21秒前
22秒前
月亮完成签到 ,获得积分10
24秒前
LJW发布了新的文献求助10
25秒前
25秒前
NiceLittleQ完成签到,获得积分10
25秒前
27秒前
29秒前
tingting完成签到 ,获得积分10
29秒前
30秒前
霜降发布了新的文献求助20
32秒前
汉堡包应助科研通管家采纳,获得10
35秒前
英姑应助科研通管家采纳,获得10
35秒前
英姑应助科研通管家采纳,获得10
35秒前
谢许杯商应助科研通管家采纳,获得10
35秒前
酷酷语兰完成签到,获得积分10
36秒前
38秒前
fd163c发布了新的文献求助10
38秒前
39秒前
42秒前
lay完成签到,获得积分10
42秒前
初识发布了新的文献求助10
43秒前
范芙蓉完成签到,获得积分10
44秒前
45秒前
范芙蓉发布了新的文献求助10
46秒前
47秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103556
求助须知:如何正确求助?哪些是违规求助? 3641285
关于积分的说明 11538629
捐赠科研通 3349882
什么是DOI,文献DOI怎么找? 1840540
邀请新用户注册赠送积分活动 907604
科研通“疑难数据库(出版商)”最低求助积分说明 824725