Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder

自编码 计算生物学 线粒体 生物 生物信息学 计算机科学 细胞生物学 遗传学 人工智能 深度学习 基因
作者
Aashutosh Girish Boob,Shih‐I Tan,A. A. Zaidi,Nilmani Singh,Xueyi Xue,Shuaizhen Zhou,Teresa A. Martin,Li‐Qing Chen,Huimin Zhao
标识
DOI:10.1101/2024.08.28.610205
摘要

Mitochondria play a key role in energy production and cellular metabolism, making them a promising target for metabolic engineering and disease treatment. However, despite the known influence of passenger proteins on localization efficiency, only a few protein-localization tags have been characterized for mitochondrial targeting. To address this limitation, we exploited Variational Autoencoder (VAE), an unsupervised deep learning framework, to design novel mitochondrial targeting sequences (MTSs). In silico analysis revealed that a high fraction of generated peptides are functional and possess features important for mitochondrial targeting. Additionally, we devised a sampling scheme to indirectly address biases arising from the differences in mitochondrial protein import machinery and characterized artificial MTSs in four eukaryotic organisms. These sequences displayed significant diversity, sharing less than 60% sequence identity with MTSs in the UniProt database. Moreover, we trained a separate VAE and employed latent space interpolation to design dual targeting sequences capable of targeting both mitochondria and chloroplasts, shedding light on their evolutionary origins. As a proof-of-concept, we demonstrate the application of these artificial MTSs in increasing titers of 3-hydroxypropionic acid through pathway compartmentalization and improving 5-aminolevulinate synthase delivery by 1.62-fold and 4.76-fold, respectively. Overall, our work not only demonstrates the potential of generative artificial intelligence in designing novel, functional mitochondrial targeting sequences but also highlights their utility in engineering mitochondria for both fundamental research and practical applications in biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业发布了新的文献求助10
刚刚
1秒前
喜马拉雅发布了新的文献求助10
2秒前
3秒前
3秒前
sqzr123完成签到,获得积分10
4秒前
6秒前
Xue完成签到,获得积分10
6秒前
7秒前
莫言发布了新的文献求助10
7秒前
榴下晨光发布了新的文献求助10
7秒前
Abel完成签到,获得积分10
7秒前
hui完成签到,获得积分10
7秒前
顺利毕业发布了新的文献求助10
9秒前
蓝天应助scholars采纳,获得10
9秒前
mao发布了新的文献求助10
9秒前
科研通AI5应助虚拟的如采纳,获得10
9秒前
慕青应助清秀冷雪采纳,获得10
10秒前
wsw发布了新的文献求助10
10秒前
Wells应助hui采纳,获得10
12秒前
cc7jn发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
北秋生完成签到,获得积分10
16秒前
喜马拉雅完成签到 ,获得积分10
16秒前
17秒前
酷波er应助邬紫依采纳,获得10
17秒前
顺利毕业完成签到 ,获得积分10
18秒前
18秒前
lsh完成签到,获得积分10
18秒前
李健应助hxhxhxhx采纳,获得10
18秒前
18秒前
Hello应助大气的苠采纳,获得10
18秒前
Nicho发布了新的文献求助10
19秒前
核桃应助XCHI采纳,获得10
19秒前
cc7jn完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452680
求助须知:如何正确求助?哪些是违规求助? 3919615
关于积分的说明 12165397
捐赠科研通 3569785
什么是DOI,文献DOI怎么找? 1960475
邀请新用户注册赠送积分活动 999757
科研通“疑难数据库(出版商)”最低求助积分说明 894733