亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-powered CT-less Multi-tracer Organ Segmentation from PET Images: A solution for unreliable CT segmentation in PET/CT Imaging

分割 PET-CT Pet成像 核医学 人工智能 正电子发射断层摄影术 计算机视觉 计算机科学 医学 放射科
作者
Yazdan Salimi,Zahra Mansouri,Isaac Shiri,Ismini Mainta,Habib Zaidi
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2024.08.27.24312482
摘要

Abstract Introduction The common approach for organ segmentation in hybrid imaging relies on co-registered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multi-tracer PET segmentation framework. Methods We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18 F-FDG (1487) or 68 Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to co-registered PET images and used to train four different deep-learning models using different images as input, including non-corrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18 F-FDG (tasks #1 and #2, respectively using 22 organs) and PET-NC and PET-ASC for 68 Ga tracers (tasks #3 and #4, respectively, using 15 organs). The models’ performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference. Results The average Dice coefficient over all organs was 0.81±0.15, 0.82±0.14, 0.77±0.17, and 0.79±0.16 for tasks #1, #2, #3, and #4, respectively. PET-ASC models outperformed PET-NC models (P-value < 0.05). The highest Dice values were achieved for the brain (0.93 to 0.96 in all four tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well. Conclusion Deep learning models allow high performance multi-organ segmentation for two popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助红雀采纳,获得10
3秒前
源源完成签到 ,获得积分10
4秒前
7秒前
馆长举报小天求助涉嫌违规
13秒前
30秒前
Vaseegara完成签到 ,获得积分10
35秒前
馆长举报wyf求助涉嫌违规
37秒前
wasttt完成签到,获得积分10
43秒前
华仔应助科研通管家采纳,获得10
44秒前
汉堡包应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
大个应助科研通管家采纳,获得10
44秒前
caronnot完成签到,获得积分10
47秒前
57秒前
1分钟前
1分钟前
1分钟前
隐形曼青应助雷含灵采纳,获得10
1分钟前
淡淡依白发布了新的文献求助10
1分钟前
1分钟前
Solari发布了新的文献求助10
1分钟前
1分钟前
东郭又琴发布了新的文献求助30
1分钟前
1分钟前
红雀发布了新的文献求助10
1分钟前
遗忘完成签到,获得积分10
1分钟前
Solari完成签到,获得积分10
1分钟前
1分钟前
1分钟前
雷含灵发布了新的文献求助10
1分钟前
熊大完成签到,获得积分10
1分钟前
1分钟前
2分钟前
archer01发布了新的文献求助10
2分钟前
zhang完成签到 ,获得积分10
2分钟前
Jasper应助小鲤鱼本鱼采纳,获得10
2分钟前
2分钟前
李爱国应助wd采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484039
求助须知:如何正确求助?哪些是违规求助? 3939900
关于积分的说明 12220057
捐赠科研通 3595349
什么是DOI,文献DOI怎么找? 1977190
邀请新用户注册赠送积分活动 1014276
科研通“疑难数据库(出版商)”最低求助积分说明 907421