Facial Expression Recognition for Probing Students’ Emotional Engagement in Science Learning

科学教育 科学学习 面部表情 教育技术 心理学 数学教育 面部表情识别 情感表达 面部识别系统 认知心理学 模式识别(心理学) 沟通
作者
Xiaoyu Tang,Yayun Gong,Xiao Yang,Jianwen Xiong,Lei Bao
出处
期刊:Journal of Science Education and Technology [Springer Science+Business Media]
被引量:4
标识
DOI:10.1007/s10956-024-10143-7
摘要

Abstract Student engagement in science classroom is an essential element for delivering effective instruction. However, the popular method for measuring students’ emotional learning engagement (ELE) relies on self-reporting, which has been criticized for possible bias and lacking fine-grained time solution needed to track the effects of short-term learning interactions. Recent research suggests that students’ facial expressions may serve as an external representation of their emotions in learning. Accordingly, this study proposes a machine learning method to efficiently measure students’ ELE in real classroom. Specifically, a facial expression recognition system based on a multiscale perception network (MP-FERS) was developed by combining the pleasure-displeasure, arousal-nonarousal, and dominance-submissiveness (PAD) emotion models. Data were collected from videos of six physics lessons with 108 students. Meanwhile, students’ academic records and self-reported learning engagement were also collected. The results show that students’ ELE measured by MP-FERS was a significant predictor of academic achievement and a better indicator of true learning status than self-reported ELE. Furthermore, MP-FERS can provide fine-grained time resolution on tracking the changes in students’ ELE in response to different teaching environments such as teacher-centered or student-centered classroom activities. The results of this study demonstrate the validity and utility of MP-FERS in studying students’ emotional learning engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jreamy完成签到 ,获得积分10
1秒前
不安分的橙子完成签到 ,获得积分10
4秒前
4秒前
小城故事和冰雨完成签到,获得积分10
5秒前
研友_ZegMrL完成签到,获得积分10
5秒前
lyy完成签到 ,获得积分10
7秒前
lige完成签到 ,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
王大雪完成签到 ,获得积分10
11秒前
乌云乌云快走开完成签到,获得积分10
12秒前
岁月如歌完成签到 ,获得积分0
14秒前
虚拟莫茗完成签到 ,获得积分10
14秒前
14秒前
一心完成签到,获得积分10
15秒前
lupin完成签到,获得积分10
15秒前
18秒前
mz完成签到 ,获得积分10
19秒前
alooof发布了新的文献求助30
19秒前
19秒前
听话的白易完成签到,获得积分10
22秒前
大道要熬发布了新的文献求助10
23秒前
23秒前
24秒前
飞快的冰淇淋完成签到 ,获得积分10
25秒前
big ben完成签到 ,获得积分10
25秒前
25秒前
jlux发布了新的文献求助10
26秒前
小高同学发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
离岸完成签到,获得积分10
29秒前
香蕉觅云应助小高同学采纳,获得10
30秒前
茅十八完成签到,获得积分10
30秒前
CDI和LIB完成签到,获得积分10
30秒前
科研通AI2S应助大道要熬采纳,获得100
31秒前
甘蓝型油菜完成签到,获得积分10
31秒前
可爱冰绿完成签到,获得积分10
31秒前
丽丽完成签到,获得积分10
32秒前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236520
求助须知:如何正确求助?哪些是违规求助? 3770183
关于积分的说明 11841026
捐赠科研通 3426808
什么是DOI,文献DOI怎么找? 1880714
邀请新用户注册赠送积分活动 933251
科研通“疑难数据库(出版商)”最低求助积分说明 840148