Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis

败血症 列线图 免疫系统 计算生物学 医学 免疫学 生物 生物信息学 机器学习 肿瘤科 计算机科学
作者
Jingjing Xu,Mingyu Zhu,Pengxiang Luo,Yuanqi Gong
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 17: 4765-4780
标识
DOI:10.2147/jir.s461809
摘要

Background: Sepsis is a syndrome marked by life-threatening organ dysfunction and a disrupted host immune response to infection. PANoptosis is a recent conceptual development, which emphasises the interconnectedness among multiple programmed cell deaths in various diseases. Nevertheless, the role of PANoptosis in sepsis is still unclear. Methods: We utilized the GSE65682 dataset to identify PANoptosis-related genes (PRGs) and associated immune characteristics in sepsis, classified sepsis samples based on PRGs using the ConsensusClusterPlus method and applied the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify cluster-specific hub genes. Based on PANoptosis -specific DEGs, we compared results from machine learning models and the best-performing model was selected. Predictive efficiency was validated through external dataset, nomogram, survival analysis, quantitative real-time PCR, and western blot. Results: The expression levels of PRGs were generally dysregulated in sepsis patients compared with normal samples, and higher PRGs expression correlated with increased immune cell infiltration. In addition, two distinct PANoptosis-related clusters were defined, and functional analysis indicated that DEGs associated with these clusters were primarily linked to immune-related pathways. The SVM model was selected as best-performing model, with lower residuals and the highest area under the curve (AUC = 0.967), which was then validated in an external dataset (AUC = 0.989) and through in vivo experiments. Additional validation through nomogram and survival analysis further confirmed its substantial predictive efficacy. Conclusion: Our findings exposed the intricate association between PANoptosis and sepsis, offering important insights on sepsis diagnosis and potential therapeutic targets. Keywords: sepsis, PANoptosis, immune infiltration, machine learning, prediction model
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的诗双完成签到,获得积分20
4秒前
4秒前
加菲丰丰应助比大家采纳,获得10
5秒前
魁梧的盼望完成签到 ,获得积分10
8秒前
今后应助图图采纳,获得10
8秒前
大模型应助十一采纳,获得10
8秒前
stqs完成签到,获得积分10
9秒前
高贵的思天完成签到,获得积分10
10秒前
汤朝雪完成签到,获得积分10
13秒前
小石头完成签到 ,获得积分10
14秒前
攒一口袋星星完成签到,获得积分10
15秒前
慕青应助动听半雪采纳,获得10
17秒前
18秒前
19秒前
wonder123应助加菲丰丰采纳,获得10
21秒前
YY完成签到 ,获得积分10
26秒前
26秒前
Wei完成签到 ,获得积分10
28秒前
科研通AI2S应助路过采纳,获得10
28秒前
pluto应助知了采纳,获得10
29秒前
31秒前
动听半雪发布了新的文献求助10
32秒前
传奇3应助丁莞采纳,获得10
38秒前
安静复天完成签到,获得积分10
39秒前
漂亮飞凤完成签到 ,获得积分20
40秒前
动听半雪完成签到,获得积分10
40秒前
40秒前
42秒前
DongWei95完成签到,获得积分10
43秒前
45秒前
49秒前
49秒前
50秒前
llmmnn完成签到,获得积分20
50秒前
w1完成签到,获得积分10
52秒前
图图发布了新的文献求助10
52秒前
丁莞发布了新的文献求助10
54秒前
54秒前
54秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878