化学
烯烃
光电化学
光化学
有机化学
电化学
催化作用
电极
物理化学
作者
Yong Zhu,Xiaona Li,Zhibing Wen,Ran Zhao,Zhi Chen,Zihao Zhang,Hua Gao,Siyao Wang,Fei Li
摘要
In photoelectrochemical (PEC) cells, selective oxidation of organic substrates coupled with hydrogen evolution represents a promising approach for value-added chemical production and solar energy conversion. In this study, we report on PEC epoxidation of alkenes at a ruthenium dye-sensitized photoanode in a CH3CN/H2O mixed solvent with LiBr as a mediator and water as the oxygen source. The dye-sensitized photoanode was found to exhibit significant advantages in the simultaneous improvement of charge separation and suppression of charge recombination. First, LiBr as a redox mediator plays a critical role in charge separation, leading to an excellent excited electron injection efficiency of 95% and a high dye regeneration efficiency of 87%. Second, the predominant charge recombination pathway on the dye-sensitized photoanode is efficiently blocked by the reaction between alkene and the in situ generated bromine oxidant. As a result, the current system achieved a remarkable photocurrent density of over 4 mA cm–2 with a record-high incident photo-to-current efficiency (IPCE) of 51% and extraordinary selectivity of up to 99% for the epoxidation of a wide range of alkenes. Meanwhile, nearly 100% Faradaic efficiency for hydrogen evolution was obtained. The performance shown here exceeds that obtained by metal oxide-based semiconductor photoanodes under comparable conditions, demonstrating the great potential of dye-sensitized photoelectrodes for organic synthesis owing to their diversity and tunability.
科研通智能强力驱动
Strongly Powered by AbleSci AI