亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hash-Based Gaussian Mixture Model (HGMM) for Roadside LiDAR Smart Infrastructure Applications

激光雷达 散列函数 计算机科学 高斯分布 计算机网络 计算机安全 遥感 地理 物理 量子力学
作者
Tianya Zhang,Yi Ge,Anjiang Chen,Mina Sartipi,Peter J. Jin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 12968-12979 被引量:1
标识
DOI:10.1109/tits.2024.3434749
摘要

Background modeling is widely used for intelligent surveillance systems to detect moving targets by subtracting static background components.Most roadside LiDAR object detection methods filter out foreground points by comparing new data points to pre-trained background references based on descriptive statistics over many frames (e.g., voxel density, number of neighbors, maximum distance).However, these solutions are inefficient under heavy traffic, and parameter values are hard to transfer from one scenario to another.In early studies, the probabilistic background modeling methods commonly used for the video-based system were considered unsuitable for roadside LiDAR surveillance systems due to the sparse and unstructured point cloud data.In this paper, the raw LiDAR data were transformed into a structured format based on the elevation and azimuth value of each LiDAR point.With this tensor representation, we break the barrier to allow the efficient multivariate Gaussian Mixture Model (GMM) for LiDAR background modeling.The Bayesian Nonparametric (BNP) approach integrates the intensity value and 3D measurements to exploit the measurement data using 3D and intensity info entirely.An adaptive GMM was also implemented that can process LiDAR background modeling in real-time.The proposed method was compared against two state-of-the-art roadside LiDAR background models, computer vision benchmark, and deep learning baselines, evaluated at point, object, and path levels under heavy traffic and challenging weather.This multimodal Bayesian GMM can handle dynamic backgrounds with noisy measurements and substantially enhances the efficiency of infrastructure-based LiDAR object detection, whereby various 3D modeling for smart city applications could be developed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助story采纳,获得10
4秒前
18秒前
鉴定为学计算学的完成签到,获得积分10
19秒前
熊啊发布了新的文献求助10
23秒前
Kevin完成签到,获得积分10
1分钟前
sci2025opt完成签到 ,获得积分10
1分钟前
1分钟前
李健应助鸡蛋黄采纳,获得10
1分钟前
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
1分钟前
鸡蛋黄发布了新的文献求助10
2分钟前
完美世界应助眼睛大智宸采纳,获得10
2分钟前
市政的艺术家完成签到,获得积分10
2分钟前
Virtual应助科研通管家采纳,获得20
2分钟前
JamesPei应助市政的艺术家采纳,获得20
2分钟前
lod完成签到,获得积分10
2分钟前
2分钟前
淡淡醉波wuliao完成签到 ,获得积分0
3分钟前
可可完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
熊啊发布了新的文献求助10
4分钟前
lj发布了新的文献求助10
4分钟前
Ava应助krajicek采纳,获得10
4分钟前
NexusExplorer应助熊啊采纳,获得10
4分钟前
lj完成签到,获得积分10
4分钟前
4分钟前
krajicek发布了新的文献求助10
4分钟前
排骨大王完成签到,获得积分10
4分钟前
4分钟前
4分钟前
灵巧灵松发布了新的文献求助10
4分钟前
5分钟前
Jiayi完成签到 ,获得积分10
5分钟前
5分钟前
熊啊发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Hello应助梦想家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877