Robust Nonnegative Matrix Factorization With Self-Initiated Multigraph Contrastive Fusion

多重图 非负矩阵分解 数学 计算机科学 因式分解 矩阵分解 融合 基质(化学分析) 人工智能 组合数学 算法 语言学 化学 哲学 物理 特征向量 图形 量子力学 色谱法
作者
Songtao Li,Shiqian Wu,Chang Tang,Junchi Zhang,Zushuai Wei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3420738
摘要

Graph regularized nonnegative matrix factorization (GNMF) has been widely used in data representation due to its excellent dimensionality reduction. When it comes to clustering polluted data, GNMF inevitably learns inaccurate representations, leading to models that are unusually sensitive to outliers in the data. For example, in a face dataset, obscured by items such as a mask or glasses, there is a high probability that the graph regularization term incorrectly describes the association relationship for that sample, resulting in an incorrect elicitation in the matrix factorization process. In this article, a novel self-initiated unsupervised subspace learning method named robust nonnegative matrix factorization with self-initiated multigraph contrastive fusion (RNMF-SMGF) is proposed. RNMF-SMGF is capable of creating samples with different angles and learning different graph structures based on these different angles in a self-initiated method without changing the original data. In the process of subspace learning guided by graph regularization, these different graph structures are fused into a more accurate graph structure, along with entropy regularization, L2,1/2 -norm constraints to facilitate the robust learning of the proposed model and the formation of different clusters in the low-dimensional space. To demonstrate the effectiveness of the proposed model in robust clustering, we have conducted extensive experiments on several benchmark datasets and demonstrated the effectiveness of the proposed method. The source code is available at: https://github.com/LstinWh/RNMF-SMGF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咔嚓完成签到,获得积分10
1秒前
1秒前
4秒前
4秒前
Owen应助自由的雅青采纳,获得10
4秒前
顺然完成签到,获得积分10
4秒前
领导范儿应助121314wld采纳,获得10
5秒前
FashionBoy应助121314wld采纳,获得10
5秒前
CodeCraft应助121314wld采纳,获得10
5秒前
我是老大应助121314wld采纳,获得10
5秒前
orixero应助121314wld采纳,获得10
5秒前
NexusExplorer应助121314wld采纳,获得10
5秒前
赘婿应助121314wld采纳,获得10
5秒前
深情安青应助121314wld采纳,获得10
5秒前
Akim应助121314wld采纳,获得10
5秒前
Noel应助121314wld采纳,获得10
5秒前
领导范儿应助forever采纳,获得10
7秒前
鱼在哪儿发布了新的文献求助10
7秒前
7秒前
7秒前
奇奇云发布了新的文献求助30
8秒前
8秒前
硫化铅发布了新的文献求助30
10秒前
ChenxiDai完成签到,获得积分10
10秒前
赘婿应助江峰采纳,获得10
10秒前
CipherSage应助皮老师采纳,获得10
10秒前
11秒前
12秒前
知行合一完成签到,获得积分10
13秒前
寻梦发布了新的文献求助50
13秒前
krajicek完成签到,获得积分10
14秒前
左岸完成签到 ,获得积分10
15秒前
流草林完成签到,获得积分10
15秒前
可乐发布了新的文献求助10
16秒前
潘潘发布了新的文献求助10
16秒前
zjh完成签到,获得积分10
16秒前
16秒前
Alicia完成签到,获得积分10
18秒前
赫连涵柏完成签到,获得积分0
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391