已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Image Segmentation for Defect Detection in Photo-lithography Fabrication

人工智能 自编码 计算机科学 制作 计算机视觉 深度学习 灰度 分割 图像分割 杠杆(统计) 像素 图像传感器 材料科学 模式识别(心理学) 医学 替代医学 病理
作者
Omari Paul,Sakib Abrar,R. Mu,Riadul Islam,Manar D. Samad
标识
DOI:10.1109/isqed57927.2023.10129372
摘要

Surface acoustic wave (SAW) sensors with increasingly unique and refined designed patterns are often developed using the lithographic fabrication processes. Emerging applications of SAW sensors often require novel materials, which may present uncharted fabrication outcomes. The fidelity of the SAW sensor performance is often correlated with the ability to restrict the presence of defects in post-fabrication. Therefore, it is critical to have effective means to detect the presence of defects within the SAW sensor. However, labor-intensive manual labeling is often required due to the need for precision identification and classification of surface features for increased confidence in model accuracy. One approach to automating defect detection is to leverage effective machine learning techniques to analyze and quantify defects within the SAW sensor. In this paper, we propose a machine learning approach using a deep convolutional autoencoder to segment surface features semantically. The proposed deep image autoencoder takes a grayscale input image and generates a color image segmenting the defect region in red, metallic interdigital transducing (IDT) fingers in green, and the substrate region in blue. Experimental results demonstrate promising segmentation scores in locating the defects and regions of interest for a novel SAW sensor variant. The proposed method can automate the process of localizing and measuring post-fabrication defects at the pixel level that may be missed by error-prone visual inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天你学习了嘛完成签到 ,获得积分10
刚刚
共享精神应助狮子清明尊采纳,获得10
刚刚
七慕凉应助Loik采纳,获得10
刚刚
2秒前
Ava应助段asd采纳,获得10
2秒前
ckyyds发布了新的文献求助30
3秒前
Hello应助provin采纳,获得10
4秒前
科研通AI5应助幕山白采纳,获得10
6秒前
7秒前
Mumu完成签到,获得积分20
7秒前
wvwvwv发布了新的文献求助10
8秒前
9秒前
12秒前
FashionBoy应助砼砼采纳,获得10
13秒前
13秒前
13秒前
chu完成签到,获得积分10
13秒前
Lynn完成签到 ,获得积分10
14秒前
lsy97发布了新的文献求助10
14秒前
苗条的傲丝完成签到,获得积分10
15秒前
完美世界应助tutu采纳,获得10
15秒前
15秒前
16秒前
ccc完成签到 ,获得积分10
16秒前
mc发布了新的文献求助10
16秒前
六沉发布了新的文献求助10
18秒前
温温完成签到,获得积分20
19秒前
竹筏过海应助柳白采纳,获得30
19秒前
香蕉完成签到 ,获得积分10
22秒前
灯与鬼应助dicc采纳,获得10
23秒前
mc完成签到,获得积分10
24秒前
小齐完成签到 ,获得积分10
24秒前
25秒前
顾矜应助科研通管家采纳,获得10
27秒前
希望天下0贩的0应助yin采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792253
求助须知:如何正确求助?哪些是违规求助? 3336501
关于积分的说明 10281144
捐赠科研通 3053220
什么是DOI,文献DOI怎么找? 1675522
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761436