Active Globally Explainable Learning for Medical Images via Class Association Embedding and Cyclic Adversarial Generation

嵌入 计算机科学 班级(哲学) 背景(考古学) 人工智能 对抗制 编码器 样品(材料) 联想(心理学) 代表(政治) 机器学习 模式识别(心理学) 政治 政治学 法学 古生物学 哲学 化学 认识论 色谱法 生物 操作系统
作者
Ruitao Xie,Jingbang Chen,Limai Jiang,Rui Xiao,Yi Pan,Yunpeng Cai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.07306
摘要

Explainability poses a major challenge to artificial intelligence (AI) techniques. Current studies on explainable AI (XAI) lack the efficiency of extracting global knowledge about the learning task, thus suffer deficiencies such as imprecise saliency, context-aware absence and vague meaning. In this paper, we propose the class association embedding (CAE) approach to address these issues. We employ an encoder-decoder architecture to embed sample features and separate them into class-related and individual-related style vectors simultaneously. Recombining the individual-style code of a given sample with the class-style code of another leads to a synthetic sample with preserved individual characters but changed class assignment, following a cyclic adversarial learning strategy. Class association embedding distills the global class-related features of all instances into a unified domain with well separation between classes. The transition rules between different classes can be then extracted and further employed to individual instances. We then propose an active XAI framework which manipulates the class-style vector of a certain sample along guided paths towards the counter-classes, resulting in a series of counter-example synthetic samples with identical individual characters. Comparing these counterfactual samples with the original ones provides a global, intuitive illustration to the nature of the classification tasks. We adopt the framework on medical image classification tasks, which show that more precise saliency maps with powerful context-aware representation can be achieved compared with existing methods. Moreover, the disease pathology can be directly visualized via traversing the paths in the class-style space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小詹完成签到,获得积分10
3秒前
lyx完成签到 ,获得积分10
4秒前
现代的含雁完成签到 ,获得积分10
4秒前
DijiaXu应助陈美宏采纳,获得10
5秒前
小灰灰完成签到,获得积分10
5秒前
Akim应助yian007采纳,获得10
6秒前
6秒前
8秒前
Yxian完成签到,获得积分10
9秒前
阳光念桃完成签到,获得积分10
10秒前
QQ完成签到 ,获得积分10
10秒前
10秒前
224完成签到 ,获得积分10
11秒前
科研狗发布了新的文献求助10
11秒前
12秒前
看文献完成签到,获得积分0
12秒前
虎正凯完成签到 ,获得积分10
12秒前
lgl完成签到,获得积分10
12秒前
庄舒嫒发布了新的文献求助10
16秒前
七面东风完成签到,获得积分10
16秒前
DJ_Tokyo完成签到,获得积分10
17秒前
李欣纾发布了新的文献求助30
19秒前
19秒前
Ari_Kun完成签到 ,获得积分10
20秒前
排骨大王完成签到,获得积分10
20秒前
21秒前
852应助典雅的绿凝采纳,获得10
21秒前
22秒前
aa完成签到,获得积分10
22秒前
XZZ完成签到 ,获得积分10
23秒前
24秒前
典雅的访风完成签到,获得积分10
25秒前
神兽下山完成签到 ,获得积分10
25秒前
忧郁隶发布了新的文献求助10
26秒前
若若1223完成签到 ,获得积分10
27秒前
圣晟胜发布了新的文献求助10
28秒前
隐形的谷槐完成签到 ,获得积分10
29秒前
爆米花应助DOCTORLI采纳,获得10
31秒前
txmjsn完成签到,获得积分0
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131641
求助须知:如何正确求助?哪些是违规求助? 3668383
关于积分的说明 11601548
捐赠科研通 3365792
什么是DOI,文献DOI怎么找? 1849213
邀请新用户注册赠送积分活动 912916
科研通“疑难数据库(出版商)”最低求助积分说明 828355