Insights into Selective Sensitivity of In2O3-CuO Heterojunction Nanocrystals to CH4 over CO and H2: Experiments and First-Principles Calculations

纳米晶 选择性 煅烧 材料科学 吸附 热液循环 纳米复合材料 异质结 带隙 氧化物 化学工程 甲烷 半导体 纳米技术 分析化学(期刊) 光电子学 化学 物理化学 催化作用 工程类 生物化学 有机化学 色谱法 冶金
作者
Shuai Nie,Jing Li,Yunxia He,Xi-Tao Yin
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (12): 6390-6399
标识
DOI:10.1021/acssensors.4c01435
摘要

Metal oxide semiconductor gas sensors have demonstrated exceptional potential in gas detection due to their high sensitivity, rapid response time, and impressive selectivity for identifying various sorts of gases. However, selectively distinguishing CH4 from those of CO and H2 remains a significant challenge. This difficulty primarily stems from the weakly reducing nature of CH4, which results in a low adsorption response and makes it prone to interference from stronger reducing gases in the surroundings. Herein, we synthesized In2O3-xCuO nanocomposites using a hydrothermal method to explore their gas sensing properties toward CH4, CO, and H2. Characterization tests confirmed the successful preparation of In2O3-xCuO nanocomposites with different In:Cu molar ratios and the formation of a p-n heterojunction. The gas sensing test results indicated that the In2O3-2.1CuO nanocomposites calcined at 500 °C and measured at 350 °C displayed a p-type response for CH4 and an n-type response for CO and H2, allowing for accurate differentiation of CH4 from CO and H2. Moreover, the In2O3-2.1CuO sensor also showed excellent stability and reproducibility across all three gases. First-principles calculations revealed distinct changes in the electronic structure of the In2O3-CuO heterojunction upon adsorption of CH4, CO, and H2, a finding that aligns with empirical evidence. The gas selectivity mechanism was effectively explained by variations in the energy band gap, driven by electrical behavior during the adsorption process. This work suggests a promising approach for developing selective gas sensors capable of detecting weakly reducing gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘发布了新的文献求助10
刚刚
kkk发布了新的文献求助10
刚刚
刚刚
净土发布了新的文献求助20
1秒前
1秒前
3秒前
卡他发布了新的文献求助10
3秒前
黄柠檬完成签到 ,获得积分10
4秒前
稳重的飞松完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
罗C发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
风云完成签到,获得积分20
10秒前
10秒前
11秒前
nuoran发布了新的文献求助10
11秒前
12秒前
12秒前
碧蓝煎蛋关注了科研通微信公众号
12秒前
英姑应助Aile。采纳,获得10
12秒前
12秒前
李爱国应助小刘采纳,获得10
12秒前
橘哩咕噜发布了新的文献求助10
13秒前
科研通AI2S应助SSQY采纳,获得10
13秒前
汉堡包应助红红火火h采纳,获得10
14秒前
隐形冰蝶发布了新的文献求助10
14秒前
lulu完成签到,获得积分10
14秒前
14秒前
xiaozhao完成签到,获得积分10
15秒前
15秒前
张萌发布了新的文献求助10
15秒前
开心安莲发布了新的文献求助200
15秒前
丘比特应助butterfly采纳,获得10
15秒前
15秒前
斯文败类应助沫沫采纳,获得10
16秒前
黄柠檬完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250