Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待盼雁发布了新的文献求助10
2秒前
晓巨人完成签到,获得积分20
2秒前
终澈发布了新的文献求助10
3秒前
3秒前
万能图书馆应助roaring采纳,获得10
4秒前
辛勤又蓝完成签到 ,获得积分10
4秒前
英姑应助自觉大碗采纳,获得10
4秒前
5秒前
whisper完成签到,获得积分10
6秒前
科研通AI2S应助liuzengzhang666采纳,获得10
6秒前
研友_VZG7GZ应助103921wjk采纳,获得10
7秒前
ALY12345发布了新的文献求助10
7秒前
Mastertry完成签到,获得积分10
7秒前
科研通AI5应助jellorio采纳,获得10
8秒前
Landau发布了新的文献求助10
10秒前
dx完成签到,获得积分10
12秒前
13秒前
自觉大碗完成签到,获得积分10
14秒前
14秒前
Landau完成签到,获得积分10
15秒前
宁宁完成签到,获得积分20
17秒前
debu9完成签到,获得积分10
17秒前
18秒前
晓巨人发布了新的文献求助10
18秒前
103921wjk发布了新的文献求助10
18秒前
星辰大海应助cs采纳,获得10
18秒前
zzx完成签到,获得积分10
19秒前
21秒前
23秒前
24秒前
ltt完成签到,获得积分10
26秒前
MikyY发布了新的文献求助10
26秒前
roaring发布了新的文献求助10
28秒前
cs发布了新的文献求助10
29秒前
30秒前
所所应助elisa828采纳,获得10
30秒前
32秒前
今后应助roaring采纳,获得10
32秒前
强强完成签到,获得积分10
34秒前
MikyY完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358