材料科学
电极
蚀刻(微加工)
氧化物
纳米技术
电化学
电解
电流密度
化学工程
冶金
化学
电解质
物理化学
图层(电子)
工程类
物理
量子力学
作者
Yueyue Sun,Jun Zhou,Jiaming Yang,Dragos Neagu,Zhengrong Liu,Chaofan Yin,Zixuan Xue,Zilin Zhou,Jiajia Cui,Kai Wu
标识
DOI:10.1002/advs.202409272
摘要
Abstract Solid oxide cells (SOCs) are promising energy‐conversion devices due to their high efficiency under flexible operational modes. Yet, the sluggish kinetics of fuel electrodes remain a major obstacle to their practical applications. Since the electrochemically active region only extends a few micrometers, manipulating surface architecture is vital to endow highly efficient and stable fuel electrodes for SOCs. Herein, a simple selective etching method of nanosurface reconstruction is reported to achieve catalytically optimized hierarchical morphology for boosting the SOCs under different operational modes simultaneously. The selective etching can create many corrosion pits and exposure of more B‐site active atoms in Sr 2 Co 0.4 Fe 1.2 Mo 0.4 O 6‐δ fuel electrode, as well as promote the exsolution of CoFe alloy nanoparticles. An outstanding electrochemical performance of the fabricated cell with the power density increased by 1.47 times to 1.31 W cm −2 at fuel cell mode is demonstrated, while the current density reaches 1.85 A cm −2 under 1.6 V at CO 2 electrolysis mode (800 °C). This novel selective etching method in perovskite oxides provides an appealing strategy to fabricate hierarchical electrocatalysts for highly efficient and stable SOCs with broad implications for clean energy systems and CO 2 utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI