AABBA Graph Kernel: Atom-Atom, Bond-Bond, and Bond-Atom Autocorrelations for Machine Learning

分子图 Atom(片上系统) 化学 计算机科学 算法 图形 数学 机器学习 理论计算机科学 嵌入式系统
作者
Lucía Morán‐González,Jørn Eirik Betten,Hannes Kneiding,David Balcells
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c01583
摘要

Graphs are one of the most natural and powerful representations available for molecules; natural because they have an intuitive correspondence to skeletal formulas, the language used by chemists worldwide, and powerful, because they are highly expressive both globally (molecular topology) and locally (atom and bond properties). Graph kernels are used to transform molecular graphs into fixed-length vectors, which, based on their capacity of measuring similarity, can be used as fingerprints for machine learning (ML). To date, graph kernels have mostly focused on the atomic nodes of the graph. In this work, we developed a graph kernel based on atom-atom, bond-bond, and bond-atom (AABBA) autocorrelations. The resulting vector representations were tested on regression ML tasks on a data set of transition metal complexes; a benchmark motivated by the higher complexity of these compounds relative to organic molecules. In particular, we tested different flavors of the AABBA kernel in the prediction of the energy barriers and bond distances of the Vaska's complex data set (Friederich et al., Chem. Sci., 2020, 11, 4584). For a variety of ML models, including neural networks, gradient boosting machines, and Gaussian processes, we showed that AABBA outperforms the baseline including only atom-atom autocorrelations. Dimensionality reduction studies also showed that the bond-bond and bond-atom autocorrelations yield many of the most relevant features. We believe that the AABBA graph kernel can accelerate the exploration of large chemical spaces and inspire novel molecular representations in which both atomic and bond properties play an important role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗依白完成签到,获得积分10
1秒前
欢--完成签到,获得积分20
3秒前
星星完成签到,获得积分10
6秒前
7秒前
sunhhhh完成签到 ,获得积分10
9秒前
12秒前
抽象的脆脆完成签到,获得积分10
12秒前
二甲双胍完成签到,获得积分20
12秒前
liull发布了新的文献求助10
14秒前
等待青枫发布了新的文献求助10
18秒前
斯文败类应助lishihao采纳,获得10
18秒前
19秒前
苹果白凡完成签到,获得积分10
20秒前
时尚初柳完成签到,获得积分10
21秒前
yiyi发布了新的文献求助20
22秒前
陈槊诸发布了新的文献求助10
24秒前
24秒前
善良的碧灵完成签到 ,获得积分10
25秒前
科研通AI5应助44采纳,获得10
26秒前
ding应助留胡子的海采纳,获得10
28秒前
28秒前
28秒前
许甜甜鸭完成签到,获得积分10
29秒前
bkagyin应助洋子采纳,获得10
31秒前
31秒前
lishihao发布了新的文献求助10
31秒前
称心凡完成签到,获得积分10
31秒前
32秒前
yyb1993完成签到 ,获得积分10
32秒前
XxxxxxENT完成签到,获得积分10
33秒前
阿童木完成签到,获得积分10
33秒前
寡妇哥完成签到 ,获得积分10
33秒前
攀攀完成签到,获得积分10
33秒前
波比发布了新的文献求助10
34秒前
天道酬勤完成签到,获得积分20
35秒前
曦cherish发布了新的文献求助10
35秒前
zyyyyyyyyyyy完成签到,获得积分10
36秒前
36秒前
JC发布了新的文献求助10
37秒前
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214